
Technical Report
Number 642

Computer Laboratory

UCAM-CL-TR-642
ISSN 1476-2986

First-class relationships in
an object-oriented language

Gavin Bierman, Alisdair Wren

August 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Gavin Bierman, Alisdair Wren

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

First-class relationships in an object-oriented language∗

Gavin Bierman

Microsoft Research, Cambridge

gmb@microsoft.com

Alisdair Wren

University of Cambridge Computer Laboratory

Alisdair.Wren@cl.cam.ac.uk

August 5, 2005

Abstract

In this paper we investigate the addition of first-class relationships to a prototypical
object-oriented programming language (a “middleweight” fragment of Java). We provide
language-level constructs to declare relationships between classes and to manipulate rela-
tionship instances. We allow relationships to have attributes and provide a novel notion
of relationship inheritance. We formalize our language giving both the type system and
operational semantics and prove certain key safety properties.

1 Introduction

Object-oriented programming languages, and object modelling techniques more generally, pro-
vide software engineers with useful abstractions to create large software systems. The grouping
of objects into classes and those classes into hierarchies provides the software engineer with an
extremely flexible way of representing real-world semantic notions directly in code.

However, whilst object-oriented languages easily represent real-world entities (e.g. students,
lectures, buildings), the programmer is poorly served when trying to represent the many natural
relationships between those entities (e.g. ‘attends lecture’, ‘is taught in’).

Relationships clearly can be represented in object-oriented languages—indeed patterns have
been established for the purpose [10]—but this important abstraction can get lost in the imple-
mentation that is forced upon the programmer by the lack of first-class support. Different aspects
of the relationship can be implemented by fields and methods of the participating classes, but
this distributes information about the relationship across various classes. Alternatively, small
classes can be defined to contain references to the two related objects along with any attributes
of the relationship. In both cases, without great care the structure can become internally in-
consistent, especially in the presence of aliasing. Furthermore, we argue that the application
of standard class-based inheritance to these ‘relationship classes’ does not adequately capture
the intuitive semantics of relationship inheritance, which must otherwise be encoded in stan-
dard Java. Such an encoding can only lead to further complexity and more opportunities for
inconsistency.

The importance of relationships is clearly reflected by their prominence in almost all mod-
elling languages: from (Extended) Entity-Relationship Diagrams (ER-diagrams) [5] to Unified
Modelling Language (UML) [9]. In Figure 1 we give some examples of relationships expressed
in UML (we use these as running examples throughout this paper).

We argue that such important abstractions deserve first-class support from programming
languages. We are the not the first to do so; Rumbaugh also pointed out the importance of first-
class language support for relationships [13]. Noble and Grundy also proposed that relationships

∗This is an extended version of a paper presented at ECOOP 2005

3

Student Course

mark : int

attends

(a) Association Class

Student

LazyStudent

Course

HardCourse

missedLectures : int

mark : int

reluctantlyAttends

attends

(b) Parallel Hierarchy

Figure 1: Relationships represented as UML association classes

should persist from the modelling to the implementation stage of program development [11].
Albano et al. propose a similar extension to a language for managing object-oriented databases
(OODB) [1], but do so in a much richer data model and do not give a full description of their
language.

In contrast to these works, our approach is more formal. We believe that such a formal,
mathematical approach is essential to set a firm foundation for researchers, users and imple-
mentors of advanced programming languages. To that end, our main contribution is a precise
description of how Java (or any other class-based, strongly-typed, object-oriented language) can
be extended to support first-class relationships. Our tool is a small core language, RelJ, which
is a subset of Java (much like Middleweight Java [4]) with suitable extensions for the support of
relationships. RelJ provides means to define relationships between objects, to specify attributes
associated with those relationships, and to create hierarchies of relationships. RelJ is intended
to capture the essence of these extensions to Java, yet is small enough to formalize completely.
Other features could be added to RelJ to make it a more complete language, but these would
not impact on the extensions for relationships.

The remainder of the paper is organized as follows. In Sect. 2 we introduce our calculus
and give a grammar. The type system of RelJ is defined in Sect. 3, where the formal notion
of subtyping is discussed and well-typed RelJ programs are characterized. Section 4 gives the
dynamics of RelJ with a small-step operational semantics. We outline a proof of type soundness
for RelJ in Sect. 5. Section 6 describes an extension to RelJ which allows the addition of UML-
style multiplicity restrictions to relationships. Finally, in Sect. 7, we conclude and consider
further and related work.

2 The RelJ Calculus

As mentioned earlier, the core of RelJ is a subset of Java, similar to other fragments of Java-like
languages [4, 7, 8]. The fragment we use consists of simple class declarations that contain a
number of field declarations and method declarations. The exact form of the class declarations
will be made more precise later.

4

2.1 Relationship Model

The main feature of RelJ is its support for first-class relationships. In addition to class decla-
rations, therefore, a RelJ program consists of a number of relationship declarations, which are
written:

relationship r extends r′ (n, n′) { FieldDecl∗ MethDecl∗ }

This defines a relationship, r, with a number of type/field name pairs, FieldDecl∗ and method
declarations, MethDecl∗. The relationship is between n and n′ where n, n′ range over classes
and relationships. This provides a means for relationship instances to participate in further
relationships. This feature is known as aggregation in ER-modelling [14]. An example is shown
in Fig. 2: the Recommends relationship specifies that a Tutor may recommend a Student to
attend a particular Course by relating an instance of Tutor to an instance of Attends, the
relationship that specifies which students attend which courses. Relationships are directed (one-
way) and many-to-many—more on this in Sect. 6.

We relate two objects, o1 and o2, with a relationship, r, by creating an instance of r, which
then exists between o1 and o2, and stores the values for r’s fields. Relationship instances are
first-class runtime objects in RelJ and so can, for example, be stored in variables and fields.
This immediately introduces design issues relating to the removal of relationship instances and
consequent creation (or not) of dangling pointers: these are discussed later.

We also support relationship inheritance, which is denoted idiomatically in UML as inher-
itance between association classes (Fig. 1b). To the best of our knowledge, our support for
this inheritance is novel and, as we will detail later, is significantly different from the standard
class-based inheritance model.

2.2 Class Inheritance vs Relationship Inheritance

While class inheritance in RelJ is identical to that in Java, RelJ’s relationship inheritance is based
on a restricted form of delegation, as found in languages such as Self [16] and, more recently,
δ [2]. Consider the RelJ code for a simple example, adapted from Pooley and Stevens [15], which
is shown in Fig. 2.

When alice and programming are placed in the Attends relationship, an instance of
Attends is created between those objects. Subsequently, when alice and programming

are further placed in ReluctantlyAttends, an instance of ReluctantlyAttends is created
between alice and programming, but contains only the missedLectures field. If that
ReluctantlyAttends instance receives a field look-up request for mark, it passes—delegates—the
request to the Attends instance—the super-instance—that exists between those same objects.

To ensure all instances are ‘complete’, specifically that they have all the fields one would
expect by inheritance, we impose the following invariant:

Invariant 1. Consider a relationship r2 which extends r1. For every instance of relationship
r2 between objects o1 and o2, there is an instance of r1, also between o1 and o2, to which it
delegates requests for r1’s fields.

By this invariant, if alice and programming were placed in the ReluctantlyAttends rela-
tionship without first having been placed in the Attends relationship, then an Attends instance
would be implicitly created between them.

Invariant 2. For every relationship r and pair of objects o1 and o2, there is at most one instance
of r between o1 and o2.

According to this second invariant, if alice and programming were later placed in the
CompulsorilyAttends relationship, then its instance and that of ReluctantlyAttends would

5

class Student {

String name;

}

class LazyStudent extends Student {

int hoursOfSleep;

}

class Course {

String title;

}

class Tutor {

String name;

}

relationship Attends (Student, Course) {

int mark;

}

relationship ReluctantlyAttends extends Attends

(LazyStudent, Course) {

int missedLectures;

}

relationship CompulsorilyAttends extends Attends

(Student, Course) {

String reason;

}

relationship Recommends (Tutor, Attends) {

String reason;

}

...

alice = new LazyStudent();

programming = new Course();

typeSystems = new Course();

Attends.add(alice, programming); // Alice attends Programming

ReluctantlyAttends.add(alice, typeSystems);

// Alice reluctantly attends Type Systems

for (Course c : alice.Attends) {

print "Attends: " + c.title;

}; // Prints:

// Attends: Programming

// Attends: Type Systems

alice
CompulsorilyAttends

programming

Attends

ReluctantlyAttends

Relation

Figure 2: Example RelJ code and possible instantiation

6

share a common super-instance: the Attends instance between alice and programming. This
situation is shown at the bottom of Fig. 2, with the dotted lines indicating delegation of field
lookups.

The motivation for such a mechanism is based on what one might intuitively expect from
relationships: Clearly, if Alice reluctantly attends a course, then she also attends it and will
receive a mark, thus we require sub-relationships to be included in their super-relationship,
giving rise to Invariant 1. Also, if Alice is both compulsorily and reluctantly attending some
course, the mark will be the same regardless of whether one views her attendance as reluctant,
compulsory or without any annotation. Thus, for each pair of related objects, there should
be only one instance of each relationship so that relationship properties are consistent, hence
Invariant 2.

RelJ also allows the removal of relationship instances. For example, we could extend the
code of Fig. 2 to remove the fact that Alice attends programming:

...

Attends.rem(alice, programming); // Remove Alice attends Programming

for (Course c : alice.Attends){

print "Attends: " + c.title; // Prints:

} // Attends: Type Systems

In fact, both the relationship addition and removal operations are statement expressions. When
used as an expression, add returns the relationship instance that was created: this provides a
convenient short-cut for setting the new instance’s fields. For regularity, rem returns the instance
that was removed, or null if the relationship did not exist before the attempted removal.

We return now to the issue raised earlier concerning relationship instance removal. Consider
the following code:

bob = new Student();

bob.name = "Bob";

databases = new Course();

databases.title = "DB 101";

bobdb = Attends.add(bob, databases); // Add bob to databases

bobdb.mark = 99;

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints DB 101

print bobdb.mark; // Prints 99

Attends.rem(bob, databases); // Remove bob from databases

for (Course cs : bob.Attends) {

print cs.title;

}; // Prints nothing

The second iteration shows that the relationship between bob and databases has been correctly
removed. We must then choose the fate of the reference to the Attends-instance stored in bobdb:
what happens if we append the statement print bobdb.mark;?

There are clearly a number of options: either the instance is removed, in which case we
would expect a runtime error; or the runtime maintains some liveness information so that an
access to the variable bobdb would generate a specific relationship exception; or finally, we could
choose not to remove the relationship instance at all, in which case the code would print 99.

7

We have chosen the third option. Thus, in RelJ, the relationship instance itself is not removed
upon deletion, but rather is treated like any other runtime value and is removed by garbage
collection. More experience in relationship programming is needed before we can determine if
this is the correct design decision.

2.3 Language Definition

We give the grammar for RelJ programs and types in Fig. 3.

The Java types used in RelJ are class names and a single primitive type, boolean (the
inclusion of further primitive types does not impact on the formalization). As discussed, we
provide relationship names as types. To allow relationship processing RelJ has a (generic) set
type set<n>, that denotes a set of values of type n. This set type is not a reference type, but
is a primitive (value) type, much like the generic literal types used by the ODMG [12].1 RelJ

does not support nested sets—sets of sets are not permitted. RelJ offers a for iterator over set
values (we adopt the same syntax as Java 5.0 for iterating over collections). We also provide
operators for explicitly adding an element to a set (+), and for removing an element (-).

For simplicity, we require some regularity in the class (and relationship) declarations of
RelJ programs: (1) we insist that all class declarations include the supertype; (2) we write
out the receiver of field access or method invocation in full; (3) all methods take just one
argument; (4) all method declarations end with a return statement; and (5) we assume that in
a RelJ program exactly one class supports a main method. To be concise, we do not consider
constructor methods; field initialization, other than the provision of type-appropriate initial
values, is performed explicitly.

The metavariable c ranges over the set of class names, ClassName; r ranges over the set of
relationship names, RelName; n ranges over both ClassName and RelName; f ranges over the
set of field names, FldName (which does not include from or to); m ranges over the set of
method names, MethName; and x ranges over the set of variable names, VarName, which we
assume contains the element this, which cannot be on the left-hand side of an assignment.
Metavariables may not take the undefined value.

As usual for such language formalizations, we assume that given a RelJ program, P , the
class and relationship declarations give rise to class and relationship tables that are denoted
by CP and RP , respectively [6]. (We will drop the subscript when it is unambiguous.) A class
(relationship) table is then a map from a class (relationship) name to a class (relationship)
definition. Signatures for these maps are to be found in Fig. 4.

A class definition is a tuple, (c,F ,M), where c is the superclass; F is a map from field names
to field types; and M is a map from method names to method definitions. Method definitions
are tuples (x,L, t1, t2, mb) where x is the parameter; L is a map from local variable names to
their types; t1 is the parameter type; t2 is the return type; and mb is the method body. For
brevity, we write Fc and Mc for the field and method definition maps of class c.

Relationship definitions are tuples (r′, n, n′,F ,M) where r′ is the super-relationship; n and n′

are the types between which the relationship is formed (the source and destination respectively);
and F , M are the field map and method map respectively, as found in class definitions. As for
classes, we write Fr for r’s field definition map and Mr for r’s method map.

In summary, RelJ offers the following operations to manipulate relationships: e.r finds the
objects related to the result of e through relationship r; e:r finds the instances of r that exist
between the result of e and the objects to which it is related; and the pseudo-fields from and
to are made available on relationship instances, and return the source and destination objects

1Having sets as a generic value type allows us to soundly support covariance—this is discussed in more detail
in Sect. 3.

8

p ∈ Program ::= ClassDecl∗ RelDecl∗

ClassDecl ::= class c extends c′

{ FieldDecl∗ MethDecl∗ }

RelDecl ::= relationship r extends r′ (n, n′)

{ FieldDecl∗ MethDecl∗ }

n ∈ NominalType ::= c | r

t ∈ Type ::= boolean | n | set<n>

FieldDecl ::= t f;

MethDecl ::= t m(t′ x) mb

mb ∈ MethBody ::= { s return e; }

v ∈ Value ::= true | false | null | empty

l ∈ LValue ::= x |

e.f field access

e ∈ Expression ::= v | value

l | l-value

e1 == e2 | equality test

e1 + e2 | e1 - e2 | set addition/removal

e.r | e:r | relationship access

e.from | relationship source

e.to | relationship destination

se statement expression

se ∈ StatementExp ::= new c() | instantiation

l = e | assignment

r.add(e,e′) | r.rem(e,e′) | relationship addition/removal

e.m(e′) method call

s ∈ Statement ::= ǫ | empty statement

se; s1 | expression

if (e) {s1} else {s2}; s3 | conditional

for (n x : e) {s1}; s2 set iteration

R ∈ Term ::= s | e RelJ terms

Figure 3: The grammar of RelJ types and programs

C ∈ ClassTable : ClassName → ClassName × FieldMap × MethMap

R ∈ RelTable : RelName → RelName × NominalType × NominalType ×
FieldMap × MethMap

F ∈ FieldMap : FldName → Type

M ∈ MethMap : MethName → VarName × LocalMap × Type × Type × MethBody

L ∈ LocalMap : VarName → Type

Figure 4: Signatures of class and relationship tables

9

between which the instance exists (or existed). These are further described in the following
sections.

3 Type System

We provide Object for the root of the class hierarchy as usual, and Relation as its counterpart
in the relationship hierarchy, and assume appropriate entries in C and R respectively:

CP (Object) = (Object, ∅, ∅)

RP (Relation) = (Relation, Object, Object, ∅, ∅)

We define the usual subtyping relation P ⊢ t ≤ t′ where t is a subtype of t′, directly populated
with the information about immediate super-types provided by C and R, then closed under
transitivity and reflexivity. P is omitted where the context makes it unambiguous.

We leave the less important typing rules to Appendix A, but two rules worth particular note
are shown here:

(STCov)

⊢ n1 ≤ n2

⊢ set<n1> ≤ set<n2>

(STObject)

⊢ Relation ≤ Object

STCov makes set types covariant with their contained type. If set<− > were a reference type,
then this kind of covariance would be unsound. However, set< − > is a value type, thus such
values are not referenced or mutated, only copied.

To unify the relationship and class hierarchies—desirable in the absence of generics—we take
Relation as a subtype of Object in rule STObject.2

While Fc and Mc give us the fields and methods declared directly in c, we define FDc and
MDc to provide us with all the fields and methods available for c’s instances, including those
inherited from its superclasses, so that their types might be checked in the later type rules:

FDc(f) =

{

Fc(f) if f ∈ dom(FP,c) or c = Object

FDc′(f) if f 6∈ dom(FP,c) and C(c) = (c′, ,)

MD is defined similarly for class methods, as are FD and MD for relationships.
We type expressions and statements in the presence of a typing environment, Γ ∈ TypeEnv,

which assigns types to variable names. Selected typing judgements for RelJ expressions are given
below:

(TSRelObj)

Γ ⊢ e : n1

R(r) = (, n2, n3, ,)
⊢ n1 ≤ n2

Γ ⊢ e.r : set<n3>

(TSRelInst)

Γ ⊢ e : n1

R(r) = (, n2, , ,)
⊢ n1 ≤ n2

Γ ⊢ e:r : set<r>

TSRelObj types the lookup of objects related through r to the result of e. As our rela-
tionships are implicitly many-to-many, the result of this lookup is a set of r’s destination type,
n2. The relationship instances that sit between the result of e and the result of e.r are accessed
through e:r. The result of such a lookup is a set of r-instances, as specified in TSRelInst.
There is a bias here between the source and destination of a relationship: the relationship in-
stances may only be accessed from the source object. It is not difficult to extend the language
so that access from the destination objects is also possible.

2If we added generics to RelJ it would be possible to remove this typing rule.

10

(TSFrom)

Γ ⊢ e : r
R(r) = (, n, , ,)

Γ ⊢ e.from : n

(TSTo)

Γ ⊢ e : r
R(r) = (, , n, ,)

Γ ⊢ e.to : n

Given an r-instance, the objects between which it exists (or between which it once existed)
can be accessed with the from and to properties. TSFrom and TSTo assign types according
to the relationship’s declaration—therefore, these are typed covariantly with the relationship
type, but this is sound as they are immutable for all instances of such a relationship.

(TSRelAdd)

R(r) = (, n1, n2, ,)
Γ ⊢ e1 : n3

Γ ⊢ e2 : n4

⊢ n3 ≤ n1

⊢ n4 ≤ n2

Γ ⊢ r.add(e1,e2) : r

(TSRelRem)

R(r) = (, n1, n2, ,)
Γ ⊢ e1 : n3

Γ ⊢ e2 : n4

⊢ n3 ≤ n1

⊢ n4 ≤ n2

Γ ⊢ r.rem(e1,e2) : r

Finally, TSRelAdd and TSRelRem specify typing of the operators that relate and unrelate
objects. In both cases, e1 and e2 must be of the source and destination type, respectively, of
relationship r. The result of either operation will be an instance of r; that which was created or
removed. A removal may evaluate to null where the results of e1 and e2 were unrelated by r.

The type-checking relation for statements is of the form Γ ⊢ s, the rules for which are largely
routine. We show some examples, however:

(TSExp)

Γ ⊢ se : t
Γ ⊢ s

Γ ⊢ se; s

(TSFor)

Γ ⊢ e : set<n1>

Γ[x 7→ n2] ⊢ s1

⊢ n1 ≤ n2

Γ ⊢ s2 x 6∈ dom(Γ)
Γ ⊢ for (n2 x : e) {s1}; s2

TSExp allows type-correct statement expressions to be used as statements, while TSFor
checks that the for construct is only asked to iterate over a set of object references. Note
that, to be consistent with the Java 5.0 syntax, we require an explicit type for the iterating
variable, although there is no reason why this type could not be inferred. We also require that
the iteration variable is not already in scope.

The set validTypesP specifies the types that may be assigned to fields and variables:

validTypesP = {boolean} ∪ dom(CP) ∪ dom(RP) ∪ {set<n> | n ∈ dom(CP) ∪ dom(RP)}

In the following two rules, we check fields and methods in the presence of their enclosing
class or relationship:

(WTField)

C(n) = (n′, ,) ∨ R(n) = (n′, , , ,)
1. f 6∈ dom(FDn′)
2. Fn(f) ∈ validTypesP
3. R(f) = (, n1, n2,) ⇒ 6⊢ n ≤ n1

P, n ⊢ f

WTField checks that f is a good field for class or relationship n by verifying (1) that f is not
defined in any super-type of n; (2) that f ’s type is valid in a well-typed program and (3) that
there is no relationship with the same name as f that might make references to f ambiguous.

11

(WTMethod)

CP (n) = (n′, ,Mn) ∨RP (n) = (n′, , , ,Mn)
Mn(m) = (x,L, t1, t2, { s return e; })

1. t1 ∈ validTypesP
2. this, x 6∈ dom(L)
3. {x 7→ t1, this 7→ n} ∪ L ⊢ s
4. {x 7→ t1, this 7→ n} ∪ L ⊢ e : t′

2
5. ⊢ t′

2
≤ t2

6. MDn′(m) = (, , t3, t4,) ⇒ ⊢ t3 ≤ t1 ∧ ⊢ t2 ≤ t4
P, n ⊢ m

WTMethod checks (1) that the input type of method m in class/relationship n is valid; (2) that
the parameter name and this do not clash with any local variables; (3) that the method body
is well-typed when the parameter, this and the local variables are assigned the types specified
in the class’ method table; (4, 5) that the return expression has a subtype of the method’s
declared return type; and (6) that the input type of this method is a supertype of any previous
declaration of m in a super-type of c, and that the return type of m is a subtype of any previous
method declaration: that is, that this definition of m may be used anywhere a supertype’s
version of m can be used. We then specify the validity of classes and relationships:

(WTClass)

C(c) = (c′ 6= c,F ,M)
P ⊢ c′

∀f ∈ dom(F) : P, c ⊢ f
∀m ∈ dom(M) : P, c ⊢ m

P ⊢ c

(WTRelationship)

RP (r) = (r′ 6= r, n1, n2,F ,M)
r′ ∈ validTypesP

1. RP (r′) = (, n′

1
, n′

2
, ,)

2. ⊢ n1 ≤ n′

1
3. ⊢ n2 ≤ n′

2

∀f ∈ dom(F) : P, r ⊢ f
∀m ∈ dom(M) : P, r ⊢ m

P ⊢ r

WTClass specifies that a class type is well-formed if its superclass is well-formed, and if all of
its methods and fields are well-typed. WTRelationship imposes many of the same restrictions
as WTClass, with the addition of conditions 1–3, which check the types related by r’s super-
relationship are supertypes of those that r relates.

Finally, a program is well-typed if all of its classes and relationships are well-typed, if classes
and relationships are disjoint, and if the subtyping relationship is antisymmetric:

(WTProgram)

∀n ∈ dom(CP) ∪ dom(RP) : P ⊢ n
∀n1, n2 : P ⊢ n1 ≤ n2 ∧ P ⊢ n2 ≤ n1 ⇒ n1 = n2

⊢ P

We only consider programs that are well-formed with respect to the above rule.

4 Semantics

We specify evaluation rules for a small-step semantics. We use evaluation contexts to specify
evaluation order [17], and use variable renaming to avoid the need for an explicit frame stack [7].

The meta-variables used in the semantics range over addresses, values, errors, objects and
stores as follows:

12

ι ∈ Address

ιnull ∈ Address ∪ {null}
u ∈ DynValue = {null, true, false} ∪ Address ∪ P(Address)
w ∈ Error ::= NullPtrError | Ee[w] | Es[w] | { w return e; }
o ∈ Object

σ : Address → Object

ρ : (Address × Address × RelName) → Address

λ : VarName → DynValue

Objects, ranged over by o, are either class instances or relationship instances. We write class
instances as an annotated pair, 〈〈c||f1 : v1, . . . , fi : vi〉〉, containing a mapping from field names
to values, and the object’s dynamic type, c. Relationship instances are written as an annotated
5-tuple, 〈〈r, ιnull, ι1, ι2||f1 : v1, . . . , fi : vi〉〉, containing the familiar field value map and dynamic
type, as well as the object addresses the instance relates, ι1 and ι2, and a reference to the
relationship instance’s super-instance, ιnull; specifically, the instance of r’s super-relationship
which relates the same object addresses ι1 and ι2. Where r = Relation, there is no super-
relationship and this reference is null. For both types of object, we take o(f) and dom(o) as if
they were applied to o’s field value map.

Dynamic values (as opposed to syntactic value literals), ranged over by u, are either ad-
dresses, ranged over by ι, sets of addresses, or true, false or null. A small-step semantics
means that expressions may at times be only partially evaluated, so we include these run-time
values and partially-evaluated method bodies in language expressions by extending Expression
as follows:

e ∈ DynExpression ::=

u | dynamic values

mb | method body

. . . terms from Expression grammar

DynLValue and DynStatement are generated from LValue and Statement in the obvious way, and
e, l and s will range over these new definitions from this point onward.

A store, σ, is a map from addresses to objects, while local variables are given values by a
locals store, λ. A relationship store, ρ maps relationship tuples to addresses such that ρ(r, ι1, ι2)
indicates the address of the instance of r which exists between ι1 and ι2.

During execution, the store and its constituent objects are modified by updating the relevant
map. Update of some map f is written f [a 7→ b] such that f [a 7→ b](a) = b and f [a 7→ b](c) =
f(a) where a 6= c. Such substitutions are commonly applied to stores (σ[ι 7→ o]) and to objects
(o[f 7→ v]).

Substitution of variables in program syntax uses the standard notation, e[x′/x], for the
replacement of all variables x in e with x′, and similarly with statements, s[x′/x].

Figure 5 gives the evaluation contexts for RelJ expressions and statements. All contexts E
contain a hole, denoted •, which indicates the position of the sub-expression to be evaluated
first—in this case the left-most, inner-most. An expression may be placed in a context’s hole
position by substitution, denoted Ee[e]. Notice that we no longer distinguish between those
expressions that may or may not be used in statement position.

A configuration in the semantics is a 5-tuple of typing environment, heap, relationship
store, locals map, and a statement: 〈Γ, σ, ρ, λ, s〉. An error configuration is a configuration
〈Γ, σ, ρ, λ, w〉, with an error in place of a statement. Γ is included for the proof of type sound-

13

Ee ∈ ExpContext ::=
• hole

| Ee.f field lookup
| Ee == e | u == Ee equality test
| Ee + e | u + Ee set addition
| Ee - e | u - Ee set removal
| Ee.r | Ee:r relationship access
| Ee.from | Ee.to relationship from/to
| { E return e; } | { return Ee; } method body
| Ee.f = e | x = Ee | u.f = Ee assignment
| Ee.m(e′) | u.m(Ee) method call
| r.add(Ee,e

′) | r.add(u,Ee) relationship addition
| r.rem(Ee,e

′) | r.rem(u,Ee) relationship removal

Es ∈ StatContext ::=
Ee; s expression

| for (n x : Ee) {s1}; s2 set iteration
| if (Ee) {s1} else {s2}; s3 conditional

Figure 5: Grammar for evaluation contexts

ness.

R ∈ DynTerm = e | s

C ∈ Config = TypeEnv × Heap × RelHeap × Locals × DynTerm

CE ∈ ErrorConfig = TypeEnv × Heap × RelHeap × Locals × Error
P

 ⊂ Config × (Config ∪ ErrorConfig)

Expression execution proceeds when a sub-expression in hole position may be reduced, as
specified by OSContextE, and similarly for statements in OSContextS:

(OSContextE)
〈Γ, σ, ρ, λ, e〉 P

 〈Γ′, σ′, ρ′, λ′, e′〉

〈Γ, σ, ρ, λ, Ee[e]〉
P
 〈Γ′, σ′, ρ′, λ′, Ee[e

′]〉

(OSContextS)
〈Γ, σ, ρ, λ, e〉 P

 〈Γ′, σ′, ρ′, λ′, e′〉

〈Γ, σ, ρ, λ, Es[e]〉
P
 〈Γ′, σ′, ρ′, λ′, Es[e

′]〉

We also execute statements inside partially-executed method bodies:

(OSInBody)
〈Γ, σ, ρ, λ, s〉 P

 〈Γ′, σ′, ρ′, λ′, s′〉

〈Γ, σ, ρ, λ, { s return e; }〉 P
 〈Γ′, σ′, ρ′, λ′, { s′ return e; }〉

It remains now to define the base cases for the operational semantics. We begin with RelJ’s
two relationship operations on an object address, ι: firstly, the objects related to ι by relationship
r may be accessed using e.r; secondly, the instances of r that relate those objects to ι may be
accessed with e:r so that relationship attributes may be read or modified:

OSRelObj: 〈Γ, σ, ρ, λ, ι.r〉 P
 〈Γ, σ, ρ, λ, {ι′ | ∃ι′′ : ρ(r, ι, ι′) = ι′′}〉

OSRelObjN: 〈Γ, σ, ρ, λ, null.r〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSRelInst: 〈Γ, σ, ρ, λ, ι:r〉 P
 〈Γ, σ, ρ, λ, {ι′′ | ∃ι′ : ρ(r, ι, ι′) = ι′′}〉

OSRelObj and OSRelObjN give the semantics for obtaining the objects related to ι
through r. Notice that the result is not just a matter of looking-up the result in a table; the
objects are found by querying ρ. If null is the target of the lookup, a null-pointer error occurs.
Similar rules are left for the appendix.

14

newPartP (r, ιnull, ι1, ι2) = 〈〈r, ιnull, ι1, ι2||f1 : initialP (FP,r(f1)), . . . , fi : initialP (FP,r(fi))〉〉
where {f1, f2, . . . , fi} = dom(FP,r)

addRelP (r, ι1, ι2, σ1, ρ1) =



















(σ1, ρ1) if ρ(r, ι1, ι2) = ι′′

(σ1[ι 7→ newPartP (r, null, ι1, ι2)], ρ1[(r, ι1, ι2) 7→ ι])

if r = Relation

(σ3, ρ3) otherwise

where ι 6∈ dom(σ1) or dom(σ2)
r 6= Relation ⇒ RP (r) = (r′, , ,)
(σ2, ρ2) = addRelP (r′, ι1, ι2, σ1, ρ1)
σ3 = σ2[ι 7→ newPartP (r, ρ2(r

′, ι1, ι2), ι1, ι2)]
ρ3 = ρ2[(r, ι1, ι2) 7→ ι]

remRelP (r, ι1, ι2, ρ) = ρ \ {((r′, ι1, ι2) 7→ ι) | ⊢ r′ ≤ r}

fldUpd(σ, f, ι, u) =

{

σ[ι 7→ σ(ι)[f 7→ u]] if f ∈ dom(σ(ι))

fldUpd(σ, f, ι′, u) if σ(ι) = 〈〈r, ι′, , || . . .〉〉

Figure 6: Definitions of auxiliary functions for creating relationship instances (newPart), for
putting objects in relationships (addRel) and for removing objects from relationships (remRel).
fldUpd demonstrates delegation of field updates to super-relationship instances.

The pseudo-fields from and to provide access to the objects between which a relationship
instance exists, returning the source and destination objects respectively:

OSFrom: 〈Γ, σ, ρ, λ, ι.from〉 P
 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , ι′, || 〉〉

OSTo: 〈Γ, σ, ρ, λ, ι.to〉 P
 〈Γ, σ, ρ, λ, ι′〉 where σ(ι) = 〈〈 , , , ι′|| 〉〉

OSRelAdd and OSRelRem give semantics to the relationship addition and removal oper-
ators add and rem respectively, and are based entirely on addRel and remRel from Fig. 6:
OSRelAdd: 〈Γ, σ1, ρ1, λ, r.add(ι1,ι2)〉

P
 〈Γ, σ2, ρ2, λ, ι3〉

where (σ2, ρ2) = addRelP (r, ι1, ι2, σ1, ρ1) and ι3 = ρ2(r, ι1, ι2)

OSRelRem1: 〈Γ, σ, ρ1, λ, r.rem(ι1,ι2)〉
P
 〈Γ, σ, ρ2, λ, ρ1(r, ι1, ι2)〉

where (r, ι1, ι2) ∈ dom(ρ1) and ρ2 = remRelP (r, ι1, ι2, ρ1)

OSRelRem2: 〈Γ, σ, ρ, λ, r.rem(ι1,ι2)〉
P
 〈Γ, σ, ρ, λ, null〉

where (r, ι1, ι2) 6∈ dom(ρ)
addRel adds an instance of r between ι1 and ι2 if such an instance does not already exist.

With a recursive call, it also ensures that instances of r’s super-relationships exist between ι1
and ι2, ensuring Invariant 1 is maintained.

remRel removes an instance of r from between ι1 and ι2, but does not alter the heap, only
the relationship store, ρ. Again, to maintain Invariant 1, all instances of sub-relationships to r
are similarly removed from between ι1 and ι2.

In the case of a relationship addition in expression context, a reference is returned to the
relationship instance that was added. Relationship removal evaluates to the instance that was
removed, if any. Where no such instance exists, null is returned.

Field update is performed with an auxiliary function fldUpd, also found in Fig. 6, which
demonstrates the delegation of field lookup to super-relationship instances:

OSFldAss: 〈Γ, σ, ρ, λ, ι.f = u〉 P
 〈Γ, fldUpd(σ, ι, f, u), ρ, λ, u〉

We conclude our discussion of the operational semantics with the two circumstances in which
variables are scoped—method call, and the for iterator.

The semantics for method call is given in OSCall. Access to the formal parameter, x, local
variables, x1..i, and this must be scoped within the body of m, so we freshen these syntactic
names to x′, x′

1..i and x′

this
in the style of Drossopoulou et al. [7].

15

OSCall: 〈Γ1, σ, ρ, λ1, ι.m(u)〉 P
 〈Γ2, σ, ρ, λ2, { s2 return e2; }〉

where
σ(ι) = 〈〈n|| . . .〉〉 or σ(ι) = 〈〈n, , , || . . .〉〉
MDP,n(m) = (x,L, t1, , s1 return e1;)
dom(L) = {x1, . . . , xi}
x′, x′

this
, x′

1
, . . . , x′

i 6∈ dom(λ1)
Γ2 = Γ1[x

′ 7→ t1][x
′

this
7→ n][x′

1..i 7→ L(x1..i)]
λ2 = λ1[x

′ 7→ u][x′

this
7→ ι][x′

1..i 7→ initial(Γ2(x
′

1..i))]
s2 = s1[x

′/x][x′

1..i/x′

1..i][x
′

this
/this]

e2 = e1[x
′/x][x′

1..i/x1..i][x
′

this
/this]

We extend the typing environment, Γ2, with new local variable type bindings for the fresh
names (as well as those for the formal parameter and this), and include appropriate initial
values in the locals store, λ2. Finally, the old syntactic names are updated in the method body,
s, and return expression, e, by substitution.

A similar strategy is used to avoid binding clashes for the for iterator:

OSFor1: 〈Γ, σ, ρ, λ, for (n x : ∅) {s1}; s2〉
P
 〈Γ, σ, ρ, λ, s2〉

OSFor2: 〈Γ1, σ, ρ, λ1, for (n x : u) {s1}; s2〉
P
 〈Γ2, σ, ρ, λ2, s3 for (n x : (u \ ι)) {s1}; s2〉

where
ι ∈ u, x 6= x′ 6∈ dom(λ1)
Γ2 = Γ1[x

′ 7→ x], λ2 = λ1[x
′ 7→ ι], s3 = s1[x

′/x]

Iteration of the empty set evaluates immediately to ‘skip’, while iteration over the non-empty
set picks an element from the set, assigns this to the iterator variable, and unfolds the statement
block, in which the bound iterator variable is freshened. We do not specify the order in which
the elements of u are bound to x.

5 Soundness

In this section we outline proofs of two key safety properties: that no type-correct program will
get ‘stuck’—except in a well-defined error state—and that types are preserved during program
execution.

Firstly, however, we define some well-formedness properties of stores and values, so that we
can check type preservation through subject reduction.

Value Typing and Well-formedness

We define a dynamic typing relation, which is identical to the typing relation presented in Sect. 3
but for the addition of the store, σ, so that values may be typed—particularly important for
showing subject reduction. To specify this new relation, all typing rules with names starting
TS are thus modified to yield a new set of rules with names starting DT (for example, TSFld
becomes DTFld with the addition of σ). We complete the specification with the addition of
two rules for typing run-time values.

Firstly, an address has a type, n, if the object at that address in the store has a dynamic type
(written dynType(σ(ι))) subordinate to n. This condition is then mapped over the members of
a set of addresses in DTSet:

(DTAddr)

⊢ dynType(σ(ι)) ≤ n
P,Γ, σ ⊢ ι : n

(DTSet)

n ∈ validTypesP

∀j ∈ 1..i : P,Γ, σ ⊢ ιj : n
P,Γ, σ ⊢ {ι1, . . . , ιi} : set<n>

We also provide a typing rule for the method body construction introduced in Fig. 5:

16

(DTMethBody)
P,Γ, σ ⊢ s

P,Γ, σ ⊢ e : t
P,Γ, σ ⊢ { s return e; } : t

We make use of a ‘well-formed object’ relation, P, σ ⊢ o ⋄inst , when o is a well-formed object
in some store, the rules for which follow:

(WFField)

dynType(o) = n
FDP,n(f) = t

P, ∅, σ ⊢ o(f) : t
P, σ, o ⊢ f ⋄fld

WFField checks that the field f stores a value of appropriate type for its definition in class
or relationship n, according the dynamic typing relation given above. This relation is mapped
across the fields of classes and relationships in the following rules:

(WFObject1)

P, σ ⊢ 〈〈Object||〉〉 ⋄inst

(WFRelInst1)

ι1, ι2 ∈ dom(σ)
P, σ ⊢ 〈〈Relation, null, ι1, ι2||〉〉 ⋄inst

(WFObject2)

{f1, . . . , fi} = dom(FDP,c)
∀j ∈ 1..i : P, σ, o ⊢ fj ⋄fld

P, σ ⊢ 〈〈c||f1 : v1, . . . , fi : vi〉〉 ⋄inst

(WFRelInst2)

RP (r) = (dynType(σ(ι)), n1, n2,F ,)
{f1, . . . , fi} = dom(F)

∀j ∈ 1..i : P, σ, o ⊢ fj ⋄fld

⊢ dynType(σ(ι1)) ≤ n1

⊢ dynType(σ(ι2)) ≤ n2

P, σ ⊢ 〈〈r, ι, ι1, ι2||f1 : v1, . . . , fi : vi〉〉 ⋄inst

WFObject1 and WFRelInst1 specify that instances of Object and Relation, respectively,
are valid. WFObject2, requires that all fields are well-formed and that the class instance has
precisely those fields that were declared or inherited. WFRelInst2, checks that only those
fields immediately declared in r are present in the relationship instance; that those fields are
well-formed; that the super-instance, at ι, is present, and has a dynamic type equal to r’s
supertype; and that the r-instance sits between two instances of appropriate type according to
r’s definition.

We check that the relationships are properly specified in ρ according to the following two
rules:

(WFRelation1)

σ(ρ(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉
P, σ, ρ ⊢ (Relation, ι1, ι2) ⋄rel

(WFRelation2)

RP (r) = (r′, , , ,)
(r′, ι1, ι2) ∈ dom(ρ)

σ(ρ(r, ι1, ι2)) = 〈〈r, ρ(r′, ι1, ι2), ι1, ι2|| . . .〉〉
P, σ, ρ ⊢ (r, ι1, ι2) ⋄rel

WFRelation2 ensures that the r-instance between ι1 and ι2 has a super-instance that also
sits between ι1 and ι2. WFRelation1 acts as a base-case for Relation, instances of which do
not take a super-instance.

We then map the conditions for well-formed instances, relations and local variables over the
heap, σ, the relationship heap, ρ, and the locals map, λ:

(WFHeap)

∀ι ∈ dom(σ) : P, σ ⊢ σ(ι) ⋄inst

P ⊢ σ ⋄heap

(WFRelHeap)

∀(r, ι1, ι2) ∈ dom(ρ) : P, σ, ρ ⊢ (r, ι1, ι2) ⋄rel

P, σ ⊢ ρ ⋄relheap

17

(WFLocals)

∀x ∈ dom(Γ) : P,Γ, σ ⊢ λ(x) : Γ(x)
P,Γ, σ ⊢ λ ⋄locals

We consider a configuration 〈Γ, σ, ρ, λ, s〉 to be well-formed when σ, ρ and λ are well-formed,
and where s is type-correct. Error configurations, 〈Γ, σ, ρ, λ, w〉, are well-formed under similar
conditions.

Safety

Type safety is shown by a subject reduction theorem, central to which is the idea that context
substitution respects types:

Lemma (Substitution). For expressions e1 and e2, which are typed t1 and t2 respectively, where t2
is a subtype of t1 and where Ee[e1] is typed t3, then Ee[e2] has a subtype of t3.

The proof follows by induction on the structure of the typing derivation. Next, we show
type preservation, which follows naturally from the previous lemma, and by induction on the
structure of the derivation of execution:

Theorem (Subject Reduction). In a well-typed program, P , where 〈Γ1, σ1, ρ1, λ1, R〉 executes to
a new configuration 〈Γ2, σ2, ρ2, λ2, R〉, that configuration will be well-formed. Furthermore, Γ1 ⊆ Γ2 and
all objects in σ1 retain their dynamic type in σ2.

Similarly where the original configuration executes to an error configuration.

Finally, we show that a well-typed program may always perform an execution step:

Theorem (Progress). For all well-typed programs, P , all well-formed configurations 〈Γ1, σ1, ρ1, λ1, R〉
execute to either:

i. an error configuration 〈Γ2, σ2, ρ2, λ2, w〉, or

ii. a new configuration 〈Γ2, σ2, ρ2, λ2, R〉

By the theorems above, any well-typed program can make a step to a new well-formed
configuration: well-typed programs do not go wrong.

6 Restricting Multiplicities

In UML, associations can be annotated with multiplicities, which restrict the number of instances
that may take part in any given relation. For example, it could be that every student attends
exactly eight courses, but that a course may have any number of students:

Student Course
* 8attends

More exotic multiplicities can include ranges (‘1..7’), and comma-separated ranges (‘1..7, 10..*’).
There are a number of ways in which such restrictions could be expressed in RelJ. We describe
below both a flexible, but dynamically checked approach, as well as a more restricted, statically
checked approach.

18

6.1 Dynamic Approach

The use of a run-time check at every relationship addition would allow us to represent most
of the possible multiplicities that can be expressed in UML. When, say, too many courses are
added to the Attends relationship, an exception could be raised:

relationship Attends (many Student, 2 Course) { int mark; }

...

Attends.add(alice, programming);

Attends.add(alice, semantics);

Attends.add(alice, types); // Exception!

We deviate from UML slightly: an association annotated at one end with ‘2’ would always have
exactly two associated instances. Instead, we interpret our 2 annotation on Course as ‘0..2’ in
UML notation: that is, courses start without any students.

6.2 Static Approach

Our preference, however, is for a static approach to the expression of multiplicities. While
less flexible, we need not generate constraint-checking code for relationship additions, and we
provide more robust guarantees that the multiplicity constraints are satisfied. Rather than give
the formal details, we shall give an overview of this extension to RelJ.

We only allow one and many annotations. The former is equivalent to ‘0..1’ in UML, the
latter to ‘0..*’:

relationship Attends (many Student, many Course);

relationship Failed (many PassedStudent, one Course);

In the declarations above, we see that students’ course attendance is unrestricted, but that a
PassedStudent may have failed at most one course.

We further restrict relationship inheritance so that a many-to-one relationship may only
inherit from a many-to-one or many-to-many relationship. We impose similar restrictions on
many-to-many and one-to-many relationship definitions. We then add to the invariants of Sect. 2.

Invariant 3. For a relationship r, declared “relationship r (n1, n2)”, where n1 is annotated
with one, there is at most one n1-instance related through r to every n2-instance. The converse
is true where n2 is annotated with one.

There is a tension between Invariants 1 and 3. Consider the following relationship definitions,
where a course can only be taught by a single lecturer, and where lecturers enjoy teaching hard
courses, but teach them slowly:

relationship Teaches (one Lecturer, many Course);

relationship ExcitedlyTeaches extends Teaches

(one Lecturer, many HardCourse);

relationship SlowlyTeaches extends Teaches

(one Lecturer, many HardCourse);

charlie = new Lecturer();

deirdre = new Lecturer();

advancedWidgets = new HardCourse();

Suppose that charlie ExcitedlyTeaches advancedWidgets, then by Invariant 1, charlie also
Teaches advancedWidgets.

Now suppose that deirdre is to slowly teach advancedWidgets:

19

SlowlyTeaches.add(deirdre, advancedWidgets);

By Invariant 1, deirdre must also be related to advancedWidgets via Teaches. However, by
Invariant 3, charlie and deirdre cannot both Teach advancedWidgets. In our formalised
semantics, we remove charlie from Teaches with advancedWidgets: the add becomes an
assignment, rather than an addition, in this case. Furthermore, by Invariant 1, charlie cannot
be in ExcitedlyTeaches with advancedWidgets once he has been removed from Teaches—
therefore, he is also removed from ExcitedlyTeaches.

This behaviour, where not only sub-relationships of r are altered by a change to r’s contents,
but possibly also the contents of parents and siblings of r, might seem unexpected. At the same
time, they make sense when examining examples, and provide a means for avoiding run-time
checks.

7 Conclusion

In this paper, we have presented RelJ, a core fragment of Java that offers first-class support
for first-class relationships. Unlike other work, we have formally specified our language; giving
mathematical definitions of its type system and operational semantics. Given such definitions
we are able prove an important correctness property of our language.

7.1 Related Work

Modelling languages like UML [9] and ER-diagrams [5] provide associations and relationships
as core abstractions. Several database systems, for example object databases adhering to the
ODMG standard [12], also provide relationships as primitives. Unfortunately, programming
languages provide no first-class access to such primitives, so weak APIs must be used instead.

As we mentioned earlier, Rumbaugh [13] was the first to point out that relationships have an
important rôle to play in general object-oriented languages, and gave an informal description of
a language based on Smalltalk. However, the matter of relationship inheritance was mentioned
only as an analogue to class inheritance, and there was no formal treatment of this or the
language as a whole.

Noble has presented some patterns for programming with relationships [10]. In fact, many of
these patterns could be used in translating RelJ programs to ‘pure’ Java. Noble and Grundy also
suggested that relationships should be made explicit in object-oriented programs [11]. Again,
neither work provides any concrete details of language support for relationships.

After completing the first draft of this work we discovered the paper by Albano, Ghelli and
Orsini [1], which describes a language based on associations (relationships) for use in an object-
oriented database environment. Their data model is quite different from ours; for example, they
treat classes as containers, or extents [12]. Thus values can inhabit multiple classes, and classes
also support multiple inheritance. In fact, classes turn out to be unary associations, which is
the core abstraction in Albano et al.’s model.

Their model also provides a rich range of constraints; for example, surjectivity and cardinality
constraints for associations, and disjointness constraints on classes. These are compiled to the
appropriate runtime checks. (They take advantage of the underlying database infrastructure
and utilize triggers and transactions.) Finally, they give no formal description of the language.

Our work, in contrast, takes as its starting point the Java object model and hence much of
the complexity of Albano et al.’s model is simply not available. However, a notion of ‘container’
can be easily coded up. First assume a class Singleton and a single object of that class, called
default. We can then define containers for the Person and Student classes of Fig. 2 as follows
(where we assume a super-relationship Extent between Singleton and Object classes).

20

relationship Persons extends Extent

(Singleton, Person) {

}

relationship Students extends Persons

(Singleton, Student) {

}

So to place Tom in the Persons container we simply write Persons.add(default, Tom). Simi-
larly Students.add(default, Jerry) would add the object Jerry to the Students container,
and by delegation also in the Persons container. The expression default.Persons would return
the current contents of the Persons container. (Syntactic sugar could easily be added to make
this code a little more compact.)

Interest in relationships is not restricted to modelling and programming languages. In the
timeframe of the next generation of Microsoft Windows, code-named ‘Longhorn’, the Windows
storage subsystem will be replaced with a new system called WinFS. WinFS provides a database-
like file store, the core of which is a collection of items, like objects, which represent data
such as images, Outlook contacts, and user-defined items. The other key component of the
WinFS data model is relationships, which are defined between items. WinFS thus represents
a move away from the traditional tree-based file system hierarchy to an arbitrary graph-based
file system, where the key abstraction is the relationship. At the time of writing, details of the
API for WinFS are scarce, but it is clear that a language such as RelJ would provide a more
direct programming framework, where various compile-time checks and optimizations would be
possible. When the details of WinFS are finalized and made public, it would be interesting to
compare various systems routines written in a language such as RelJ with those written using
the APIs.

7.2 Further work

Clearly RelJ is just a first step in providing comprehensive first-class support of relationships in
an object-oriented language. There are several features available in modelling languages, such
as UML, that cannot currently be expressed in RelJ; notably, we only support relationships that
are one-way. We hope to add relationships that may be traversed in both directions safely, as
well as further investigating multiplicities.

In this paper we have not given details of how RelJ can be implemented. To support it directly
in the runtime would require considerable extension of the JVM. The design and evaluation of
such an extension is interesting future work. As an alternative, we have informally specified a
systematic translation of RelJ into ‘pure’ Java. In the future, we plan to formalize this translation
and prove it correct.

Another direction we wish to consider is extending RelJ with more query-like facilities (in
a style similar to Cω [3]). For example, one might add a simple filter facility, e.g. the expres-
sion alice.Attends[it.title.matches("*101")] would return the beginners’ courses that
alice is currently attending. (The subexpression in square brackets is a simple boolean-valued
expression, where it is bound to each element of the relationship in turn.)

Finally, we conclude by recording our hope that our language may provide a first step in
the process of principled unification of modelling languages (UML, ER-diagrams), programming
languages (Java, C♯), and data query and specification languages (SQL, schema design).

Acknowledgments

Much of this work was completed whilst Bierman was at the University of Cambridge Computer
Laboratory and supported by EU grants Appsem-II and EC FET-GC project IST-2001-33234

21

Pepito. Wren is currently supported by an EPSRC studentship. We are grateful to Sophia
Drossopoulou and her group for useful comments on this work, as well as to Matthew Fairbairn,
Giorgio Ghelli, Alan Mycroft, James Noble, Matthew Parkinson, Andrew Pitts, Peter Sewell
and the attendees of FOOL 2005.

References

[1] A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for a strongly typed object-
oriented database programming language. In Proceedings of VLDB, 1991.

[2] C. Anderson and S. Drossopoulou. δ: An imperative object-based calculus with delegation.
In Proceedings of USE, 2002.

[3] G. Bierman, E. Meijer, and W. Schulte. The essence of Cω. In Proceedings of ECOOP,
2005.

[4] G. Bierman, M. Parkinson, and A. Pitts. MJ: A core imperative calculus for Java and Java
with effects. Technical Report 563, University of Cambridge Computer Laboratory, 2003.

[5] P. P.-S. Chen. The entity-relationship model – toward a unified view of data. ACM Trans-
actions on Database Systems, 1(1):9–36, 1976.

[6] S. Drossopoulou. An abstract model of Java dynamic linking and loading. In Proceedings
of Types in Compilation (TIC), 2000.

[7] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited, September
2000.

[8] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings of POPL,
pages 171–183, 1998.

[9] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development process.
Addison-Wesley, 1999.

[10] J. Noble. Basic relationship patterns. In Pattern Languages of Program Design, vol. 4.
Addison Wesley, 1999.

[11] J. Noble and J. Grundy. Explicit relationships in object-oriented development. In Proceed-
ings of TOOLS, 1995.

[12] R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[13] J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In Proceed-
ings of OOPSLA, pages 466–481, 1987.

[14] J. Smith and D. Smith. Database abstractions: Aggregation and generalizations. ACM
Transactions on Database Systems, 2(2):105–133, 1977.

[15] P. Stevens and R. Pooley. Using UML: software engineering with objects and components.
Addison-Wesley, 1999.

[16] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings of OOPSLA,
pages 227–242. ACM Press, 1987.

[17] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

22

(TSBoolT)

Γ ⊢ true : boolean

(TSBoolF)

Γ ⊢ false : boolean

(TSNull)

n ∈ validTypesP

Γ ⊢ null : n

(TSEmpty)

n ∈ validTypesP

Γ ⊢ empty : set<n>

(TSVar)

Γ(x) = t
Γ ⊢ x : t

(TSNew)

c ∈ validTypesP

Γ ⊢ new c() : c

(TSEq)

Γ ⊢ e1 : n
Γ ⊢ e2 : n′

Γ ⊢ e1 == e2 : boolean

(TSFld)

Γ ⊢ e : n
FDn(f) = t
Γ ⊢ e.f : t

(TSAdd)

Γ ⊢ e1 : set<n1>

Γ ⊢ e2 : n2

⊢ n1 ≤ n3

⊢ n2 ≤ n3

Γ ⊢ e1 + e2 : set<n3>

(TSSub)

Γ ⊢ e1 : set<n1>

Γ ⊢ e2 : n2

⊢ n1 ≤ n3

⊢ n2 ≤ n3

Γ ⊢ e1 - e2 : set<n3>

(TSAss)

x 6= this

Γ ⊢ x : t1
Γ ⊢ e : t2
⊢ t2 ≤ t1

Γ ⊢ x = e : t2

(TSFldAss)

Γ ⊢ e1 : n
Γ ⊢ e2 : t1

FDn(f) = t2
⊢ t1 ≤ t2

Γ ⊢ e1.f = e2 : t1

(TSCall)

Γ ⊢ e1 : n
Γ ⊢ e2 : t1

MDn(m) = (x,L, t2, t3,)
⊢ t1 ≤ t2

Γ ⊢ e1.m(e2) : t3

(TSCond)

Γ ⊢ e : boolean
Γ ⊢ s1

Γ ⊢ s2

Γ ⊢ s3

Γ ⊢ if (e) {s1} else {s2}; s3

(TSSkip)

Γ ⊢ ǫ

Figure 7: The remaining type rules of RelJ

A Details of Type System and Semantics

This appendix contains the details of the semantics not covered in the main body of the paper.

A.1 Typing Rules

In addition to the subtyping rules given in Sect. 3, the following rules populate the subtyping
relation with the immediate supertypes provided by the language syntax, and give the reflexive,
transitive closure:

(STRef)

t ∈ validTypesP

P ⊢ t ≤ t

(STTrans)

P ⊢ t1 ≤ t2
P ⊢ t2 ≤ t3
P ⊢ t1 ≤ t3

(STClass)

CP (c1) = (c2, ,)
P ⊢ c1 ≤ c2

(STRel)

RP (r1) = (r2, , , ,)
P ⊢ r1 ≤ r2

We specify that the following trivial types are valid types in all programs, P :

(WTBool)

P ⊢ boolean

(WTObject)

P ⊢ Object

(WTRelation)

P ⊢ Relation

(WTSet)

P ⊢ n
P ⊢ set<n>

The typing rules for the RelJ statements and expressions not typed in Sect. 3 are shown in
Fig. 7.

Variables are typed by TSVar simply by look-up in the typing environment. Note that
TSVar covers the type of this by its inclusion in VarName. New class-instance allocation is
typed in the obvious way. The equality test is valid as long as both expressions are addresses.
(Similar rules are required for e1 and e2 as set< − > or boolean types, but these are obvious

23

and omitted.) Field look-up is typed from the field table of the receiver’s static type. Rules
TSVarAdd to TSFldSub demonstrate object addition and removal from set values. In all
cases, the right-hand operand must be the address of an object with a type subordinate to
the set’s static type. The entire expression takes the right-hand operand’s type. Variables and
fields may be assigned values subordinate to the left-hand side’s declared type. Method call is
typed directly from the method look-up table. The for statement was typed in the body of the
paper. The conditional’s typing-checking is standard, recalling that we do not assign types to
statements. All statements require that their continuation statement is also well-typed, and we
explicitly type the empty statement (ǫ), which is usually omitted in program text.

A.2 Operational Semantics

First, we give a full definition of substitution:

Definition 1 (Map Substitution). Substitution on a map for function f , written f [a 7→ b],
updates f such that f(a) = b, and that f remains the same everywhere else:

i. f [a 7→ b](a) = b

ii. a 6= c ⇒ f [a 7→ b](c) = f(c)

Next we specify new, which returns an initialised class instance; initial, which returns an
appropriate initial value for a variable of type t; dynType, which returns the dynamic type of an
address in the store; and of fld, which returns the value of field f in the object at ι in store σ,
delegating the field lookup to the superinstance as appropriate.

newP (c) =

{

〈〈Object||〉〉 if c = Object

〈〈c||f1 : initialP (FDP,c(f1)), . . . , fi : initialP (FP,c(fi))〉〉 otherwise

where {f1, f2, . . . , fi} = dom(FDP,c)

initialP (t) =











null if t = n′

false if t = boolean

∅ if t = set<n>

dynType(o) = n where o = 〈〈n|| . . .〉〉 ∨ o = 〈〈n, , , || . . .〉〉

fld(σ, f, ι) =

{

σ(ι)(f) if f ∈ dom(σ(ι)) or

fld(σ, f, ι′) if f 6∈ dom(σ(ι)) ∧ σ(ι) = 〈〈r, ι′, , ||...〉〉

The remaining rules of the operation semantics are then as follows:

24

OSEmpty: 〈Γ, σ, ρ, λ, empty〉 P
 〈Γ, σ, ρ, λ, ∅〉

OSVar: 〈Γ, σ, ρ, λ, x〉 P
 〈Γ, σ, ρ, λ, λ(x)〉

OSFldN: 〈Γ, σ, ρ, λ, null.f〉〈Γ, σ, ρ, λ,NullPtrError〉

OSFld: 〈Γ, σ, ρ, λ, ι.f〉 P
 〈Γ, σ, ρ, λ, fld(σ, ι, f)〉

OSRelInstN: 〈Γ, σ, ρ, λ, null:r〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSEq: 〈Γ, σ, ρ, λ, u == u〉 P
 〈Γ, σ, ρ, λ, true〉

OSNeq: 〈Γ, σ, ρ, λ, u == u′〉 P
 〈Γ, σ, ρ, λ, false〉 where u 6= u′

OSNew: 〈Γ, σ, ρ, λ, new c()〉 P
 〈Γ, σ[ι 7→ newP (c)], ρ, λ, ι〉 where ι 6∈ dom(σ)

OSBody: 〈Γ, σ, ρ, λ, { return u; }〉 P
 〈Γ, σ, ρ, λ, u〉

OSAdd: 〈Γ, σ, ρ, λ, u + ι〉 P
 〈Γ, σ, ρ, λ, u ∪ {ι}〉

OSAddN: 〈Γ, σ, ρ, λ, u + null〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSSub: 〈Γ, σ, ρ, λ, u - ι〉 P
 〈Γ, σ, ρ, λ, u \ {ι}〉

OSSubN: 〈Γ, σ, ρ, λ, u - null〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSVarAss: 〈Γ, σ, ρ, λ, x = u〉 P
 〈Γ, σ, ρ, λ[x 7→ u], u〉

OSFldAssN: 〈Γ, σ, ρ, λ, null.f = u〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSRelAddN: 〈Γ, σ, ρ, λ, r.add(ιnull
1

,ιnull
2

)〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

where ιnull
1

= null or ιnull
2

= null

OSRelRemN: 〈Γ, σ, ρ, λ, r.rem(ιnull
1

,ιnull
2

)〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

where ιnull
1

= null or ιnull
2

= null

OSCallN: 〈Γ, σ, ρ, λ, null.m(u)〉 P
 〈Γ, σ, ρ, λ,NullPtrError〉

OSStat: 〈Γ, σ, ρ, λ, u; s〉 P
 〈Γ, σ, ρ, λ, s〉

OSCondT: 〈Γ, σ, ρ, λ, if (true) {s1} else {s2}; s3〉
P
 〈Γ, σ, ρ, λ, s1 s3〉

OSCondF: 〈Γ, σ, ρ, λ, if (false) {s1} else {s2}; s3〉
P
 〈Γ, σ, ρ, λ, s2 s3〉

B Proofs

Lemma 1 (Freshness and substitution). Let y′ = y[a 7→ b], a 6∈ dom(a), then for any
c ∈ dom(y), y′(c) = y(c).

Proof As a ∈ dom(y) and c 6∈ dom(y), then a 6= c. By Definition 1, then, y′(c) = y(c). �

Lemma 2. validTypesP precisely specifies the well-formed types of a program P :

t ∈ validTypesP ⇔ P ⊢ t

Proof Recall that we only consider well-formed P with respect to WFProgram.

(⇒) If t ∈ validTypesP then either:

– t = boolean, in which case P ⊢ t by WTBool

– t ∈ dom(CP), in which case P ⊢ t by WTProgram

– t ∈ dom(RP), in which case P ⊢ t by WTProgram

– t = set<n> where n ∈ dom(CP)∪ dom(RP), in which case P ⊢ t by WTSet and the
argument above.

(⇐) If P ⊢ t then either:

– the judgement arises by WTBool, in which case t = boolean ∈ validTypesP ,

– the judgement arises by WTClass, in which case t ∈ dom(CP) ⊂ validTypesP .

– the judgement arises by WTRelationship, in which case t ∈ dom(RP) ⊂
validTypesP .

25

– the judgement arises by WTSet, in which case t = set<n> such that P ⊢ n. It must
be the case that n ∈ dom(CP) ∪ dom(RP) by argument above, so t ∈ validTypesP as
required.

�

Lemma 3 (Subtyping relationship properties). The subtyping relationship of a well-
formed program P , P ⊢ − ≤ −, forms a set partial orders with a maximum elements Object

and set<Object> respectively.

(a) P ⊢ − ≤ − is a partial order.

(b) Object is a maximal element: P ⊢ Object ≤ t ⇒ t = Object.

(c) Relation is the maximal element of RelName under subtyping:
P ⊢ Relation ≤ r ⇒ r = Relation.

(d) set<Object> is a maximal element:
P ⊢ set<Object> ≤ t ⇒ t = set<Object>.

(e) If 6⊢ r′ ≤ r and ⊢ r′ ≤ r′′ then 6⊢ r′′ ≤ r.

Furthermore, when P ⊢ t ≤ t′:

(f) t, t′ ∈ validTypesP .

(g) Named types (ClassName ∪ RelName) are closed under subtyping:
t ∈ ClassName ∪ RelName ⇒ t′ ∈ ClassName ∪ RelName and vice versa.

(h) Relationships are downwards-closed under subtyping:
t′ ∈ RelName ⇒ t ∈ RelName).

(i) Set types are closed under subtyping:
t = set<n> ⇒ t′ = set<n′> and vice versa.

(j) {boolean} is closed under subtyping:
t = boolean ⇒ t′ = boolean and vice versa.

Proof

(a) P ⊢ − ≤ − is clearly reflexive, by STRef, and transitive, by STTrans. Class and rela-
tionship inheritance is antisymmetric by the acyclicity constraint in WTProgram. The
order set up on sets (set<− >) is isomorphic to that on n, and is also therefore a partial
order.

(b) Suppose that P ⊢ Object ≤ t and examine its derivation. Clearly STCov, STObject and
STRel do not apply. Where the derivation ends in STRef then t = Object. Where the
derivation ends in STTrans, then there is a t′ such that P ⊢ Object ≤ t′ and P ⊢ t′ ≤ t;
by induction, t′ = Object and by induction again t = t′ = Object. Where the derivation
ends in STClass, then note that CP (Object) = (Object, ,), so t = Object.

(c) By induction on the derivation of P ⊢ Relation ≤ r. Clearly STObject, STClass,
STCov do not apply. Where derivation ends in STRef then r = Relation. Where
derivation ends in STTrans then there is some t′′ such that P ⊢ Relation ≤ t′′ and
P ⊢ t′′ ≤ r; but relationships are downwards closed under subtyping by Lemma 3(h) so
t′′ ∈ RelName and by induction Relation = t′′ = r as required. Where derivation ends in
STRel then RP (Relation) = (Relation, , , ,) so r = Relation.

(d) By induction on the derivation of P ⊢ set<Object> ≤ t. Result follows from Lemma 3(b).

(e) Suppose that ⊢ r′′ ≤ r. Then, by STTrans and ⊢ r′ ≤ r′′, ⊢ r′ ≤ r. Contradiction.

26

(f) By induction on derivation of P ⊢ t ≤ t′. Where the derivation ends in STRef then
t ∈ validTypesP . Where the derivation ends in STTrans then there is some t′′ such
that P ⊢ t ≤ t′′ and P ⊢ t′′ ≤ t′; by induction t, t′, t′′ ∈ validTypesP . Where the derivation
ends in STClass then t ∈ dom(C(P)) ∈ validTypesP by definition; by WTProgram,
P ⊢ t so either (i) P ⊢ t′ by WTClass, in which case t′ = Object ∈ validTypesP or
t′ ∈ dom(C(P)) ⊂ validTypesP , or (ii) t = Object ∈ validTypesP so t′ = Object by
Lemma 3(b). Where the derivation ends in STRel, the argument proceeds as for STClass
and Relation. Where the derivation ends in STCov then t = set<n> and t′ = set<n′>

and P ⊢ n ≤ n′; by induction n, n′ ∈ validTypesP so set<n>, set<n′> ∈ validTypesP by
definition. Where the derivation ends in STObject, t = Relation ∈ validTypesP and
t′ = Object ∈ validTypesP .

(g) By induction on derivation of P ⊢ t ≤ t′. Where the derivation ends in STRef then
t = t′. Where the derivation ends in STTrans then there is some t′′ such that P ⊢ t ≤ t′′

and P ⊢ t′′ ≤ t′; by induction t′′ ∈ NominalType and so by induction t′ ∈ NominalType

(or vice versa). Where the derivation ends in STClass then t = c and t′ = c′ where
c, c′ ∈ ClassName ⊂ NominalType as required. Similarly where the derivation ends in
STRel. The derivation cannot end in STCov as no n′ is such that set<n′> ∈ NominalType

by definition. Where the derivation ends in STObject, t = Relation ∈ NominalType and
t′ = Object ∈ NominalType.

(h) By induction on derivation of P ⊢ t ≤ r. Clearly STClass, STCov and STObject do not
apply. Where derivation ends in STRef then t = r. Where derivation ends in STTrans
then there is some t′′ where P ⊢ t ≤ t′′ and P ⊢ t′′ ≤ r; by induction t′′ ∈ RelName, so
by induction t ∈ RelName. Where derivation ends in STRel then t ∈ dom(RP) so
t ∈ RelName by definition.

(i) By induction on derivation of P ⊢ t ≤ t′. Clearly STClass, STRel and STObject do not
apply. Where derivation ends in STRef then t = t′. Where derivation ends in STTrans
then result follows by induction. Where derivation ends in STCov, then clearly both
types are of the form set<n>.

(j) By trivial induction as above.

�

Lemma 4. P ⊢ n ≤ n′ ⇒ FDP,n′ ⊆ FDP,n

Proof By induction on the derivation of P ⊢ n ≤ n′.

Case 1: P ⊢ n ≤ n′ arises by STRef
Then n = n′ and the result follows trivially.

Case 2: P ⊢ n ≤ n′ arises by STObject
Then n = Relation and n′ = Object so FDP,n′ = FDP,n = ∅ as required.

Case 3: P ⊢ n ≤ n′ arises by STClass
Then C(n) = (n′, ,). Take some f, t such that FDP,n′(f) = t.

Suppose that FDP,n(f) 6= t. Then by definition of FD, FP,n(f) = t′. But by WTClass,
it must be the case that P, n ⊢ f . By WTField, f 6∈ dom(FDP,n′). Contradiction.

Conclude FDP,n(f) = t as required.

Case 4: P ⊢ n ≤ n′ arises by STRel
As above.

27

Case 5: P ⊢ n ≤ n′ arises by STTrans
Then P ⊢ n ≤ n′′ and P ⊢ n′′ ≤ n′. By induction, FDP,n′′ ⊆ FDP,n and FDP,n′ ⊆
FDP,n′′ . Therefore, FDP,n′ ⊆ FDP,n as required by transitivity of ⊆.

�

Lemma 5. Where P ⊢ n ≤ n′ and MDP,n′(m) = (, t′1, t
′

2, ,) then MDP,n(m) = (, t1, t2, ,)
P ⊢ t′1 ≤ t1 and P ⊢ t2 ≤ t′2.

Proof By induction on the derivation of P ⊢ n ≤ n′.

Case 1: P ⊢ n ≤ n′ arises by STRef
Then n = n′, MDP,n = MDP,n′ and the result follows trivially from reflexivity of subtyp-
ing.

Case 2: P ⊢ n ≤ n′ arises by STObject
Then n = Relation and n′ = Object so MDP,n = MDP,n′ = ∅ as required.

Case 3: P ⊢ n ≤ n′ arises by STClass
Then C(n) = (n′, ,).

If m is (re-)declared in n, then MDP,n(m) = MP,n(m) = (, t1, t2, ,), and by WTClass,
P, n ⊢ m. Then, by WTMethod, P ⊢ t′1 ≤ t1 and P ⊢ t2 ≤ t′2 as required.

If m is not delcared in n, then m 6∈ dom(MP,n) so MDP,n′(m) = MDP,n(m) and the
result follows trivially by reflexivity of subtyping.

Case 4: P ⊢ n ≤ n′ arises by STRel
As above.

Case 5: P ⊢ n ≤ n′ arises by STTrans
Then P ⊢ n ≤ n′′ and P ⊢ n′′ ≤ n′.

By induction, MDP,n′′(=)(, t′′1, t
′′

2, ,) and P ⊢ t′′1 ≤ t1, P ⊢ t′1 ≤ t′′1, P ⊢ t2 ≤ t′′2 and
P ⊢ t′′2 ≤ t′2. By transitivity of subtyping, P ⊢ t′1 ≤ t1 and P ⊢ t2 ≤ t′′2 as required.

�

Lemma 6. The types of run-time values in the store are preserved by store extension. If:
Assumption 1: P, Γ, σ ⊢ u : t
Assumption 2: σ′ = σ[ι′ 7→ o′]
Assumption 3: ι′ 6∈ dom(σ)

then P, Γ, σ′ ⊢ u : t.

Proof We proceed by induction on derivation of P, Γ, σ ⊢ u : t.

Case 1: Derivation ends DTBoolF/DTBoolT/DTNull
Then the result follows immediately.

Case 2: Derivation ends DTAddr
Then u = ι and t = n.

1: P ⊢ dynType(σ(u)) ≤ t (Assm. 1, DTAddr)
2: u ∈ dom(σ) (1)
3: σ(u) = σ′(u) (Assm. 2, 2, Lemma 1)
4: dynType(σ(u)) = dynType(σ′(u)) (3, Defn dynType)
5: P ⊢ dynType(σ′(u)) ≤ n (1, 4)

28

6: P, Γ, σ′ ⊢ u : t (5, DTAddr)

Case complete.

Case 3: Derivation ends DTSet
Then u = {ι1, . . . , ιi} and t = set<n>.

7: P ⊢ n (Assm. 1, DTSet)
8: ∀ι ∈ dom(u) : P, ∅, σ ⊢ ι : n (Assm. 1, DTSet)
9: ∀ι ∈ dom(u) : P, ∅, σ′ ⊢ ι : n (8, Inductive Hypothesis)

10: P, Γ, σ′ ⊢ u : t (7, 9, DTSet)

Therefore, in all cases, P, Γ, σ′ ⊢ u : t. �

Lemma 7. The well-formedness of fields in objects in the store is preserved by store extension:
If:

Assumption 1: P, σ, o ⊢ f ⋄fld

Assumption 2: σ′ = σ[ι′ 7→ o′]
Assumption 3: ι′ 6∈ dom(σ)

then P, σ′, o ⊢ f ⋄fld .

Proof The only applicable rule for statement Assm. 1 is WFField:
1: dynType(o) = n (Assm. 1, WFField)
2: FDP,n(f) = t (Assm. 1, WFField)
3: P, ∅, σ ⊢ o(f) : t (Assm. 1, WFField)
4: P, ∅, σ′ ⊢ o(f) : t (Assm. 2, Assm. 3, 3, Lemma 6)
5: P, σ, o ⊢ f ⋄fld (1, 2, 4, WFField)

�

Lemma 8. The well-formedness of objects in the store is preserved by the addition of a new
object. If:

Assumption 1: P, σ ⊢ σ(ι) ⋄inst

Assumption 2: σ′ = σ[ι′ 7→ o′]
Assumption 3: ι′ 6∈ dom(σ)

Then: P, σ′ ⊢ σ′(ι) ⋄inst .

Proof Assm. 1 must arise by either WFObject, WFRelInst1 or WFRelInst2, as no other
rule is applicable. We therefore proceed by case analysis:

Case 1: Assm. 1 arises from WFObject1
Then o = 〈〈Object||〉〉, and the result follows immediately from WFObject1.

Case 2: Assm. 1 arises from WFObject2
Then o = 〈〈c||f1 : v1, . . . , fn : vn〉〉:

1: dom(σ(ι)) = dom(FDP,c) (Assm. 1, WFObject2)
2: ∀f ∈ dom(σ(ι)) : P, σ, σ(ι) ⊢ f ⋄fld (Assm. 1, WFObject2)
3: ∀f ∈ dom(σ′(ι)) : P, σ′, σ′(ι) ⊢ f ⋄fld (Assm. 2, Assm. 3, 2, Lemma 7)
4: P, σ′ ⊢ σ′(ι) ⋄inst (1, 3, WFObject)

Case 3: Assm. 1 arises from WFRelInst1
Then o = 〈〈Relation, null, ι1, ι2||〉〉, and the result follows immediately from WFRe-
lInst1 and that ι1, ι2 ∈ dom(σ) ⊆ dom(σ′).

Case 4: Assm. 1 arises from WFRelInst2
Then o = 〈〈r 6= Relation, ι′′, ι1, ι2||f1 : v1, . . . , fn : vn〉〉:

29

5: dom(σ(ι)) = dom(FP,c) (Assm. 1, WFRelInst2)
6: RP (r) = (dynType(σ(ι′′)), n1, n2, ,) (Assm. 1, WFRelInst2)
7: ι′′ ∈ dom(σ) (6, Defn of dynType)
8: σ′(ι′′) = σ(ι′′) (Assm. 2, Assm. 3, 7, Lemma 1)
9: RP (r) = (dynType(σ′(ι′′)), n1, n2, ,) (6, 8)

10: ∀f ∈ dom(σ(ι)) : P, σ, σ(ι) ⊢ f ⋄fld (Assm. 1, WFRelInst2)
11: ∀f ∈ dom(σ′(ι)) : P, σ′, σ′(ι) ⊢ f ⋄fld (Assm. 2, Assm. 3, 10, Lemma 7)
12: ⊢ dynType(σ(ι1)) ≤ n1 (Assm. 1, WFRelInst2)
13: ι1 ∈ dom(σ) (12, Defn of dynType)
14: σ(ι1) = σ′(ι1) (Assm. 2, Assm. 3, 13, Lemma 1)
15: ⊢ dynType(σ′(ι1)) ≤ n1 (12, 14)
16: ⊢ dynType(σ(ι2)) ≤ n2 (Assm. 1, WFRelInst2)
17: ⊢ dynType(σ′(ι2)) ≤ n2 (16, Proof as for ι1 above)
18: P, σ′ ⊢ o ⋄inst (5, 9, 11, 15, 17, WFRelInst2)

Therefore, in all cases, well-formed objects are preserved by store extension. �

Lemma 9. Initial values of valid types are well-typed. For all well-formed P , Γ, σ and t such
that P ⊢ t, it is the case that P, Γ, σ ⊢ initialP (t) : t

Proof Pick arbitrary Γ, σ. We then proceed by case analysis on the definition of t ∈ Type.

Case 1: t ∈ NominalType

Then initialP (t) = null by definition, and P, Γ, σ ⊢ initialP (t) : t by DTNull.

Case 2: t ∈ {true, false}
Then initialP (t) = false by definition, and P, Γ, σ ⊢ initialP (t) : t by DTBoolF.

Case 3: t = set<n′>, n′ ∈ NominalType

Then initialP (t) = ∅ by definition. Vacuously, ∀ι ∈ initialP (t) : P, Γ, σ ⊢ ι : n′ so
P, ∅, σ ⊢ initialP (t) : t by DTSet.

�

Lemma 10. Field types are valid:

FP,n(f) = t ⇒ P ⊢ t

Proof By WTProgram, for all classes/relationships, n ∈ dom(CP) ∪ dom(RP), P ⊢ n must
hold. For all such classes/relationships, by WTClass/WTRelationship, for all fields f ∈
dom(Fn), P, n ⊢ f must hold. By WTField, for each such field, Fn(f) ∈ validTypesP , so by
Lemma 2 P ⊢ t as required. �

Corollary 11. As for Lemma 10, but for FD. Observe that for a type t to be in the range of
FD, there must be some n, f for which FP,n(f) = t. Proof then as above.

Lemma 12. Newly allocated class instances are well-formed: ∀c ∈ dom(CP) :
P, σ ⊢ newP (c) ⋄inst .

Proof

Case 1: c = Object

Then newP (c) = 〈〈Object||〉〉, and the result follows immediately from WFObject1.

Case 2: c 6= Object

Clearly:

30

1: dom(newP (c)) = dom(FDP,c) (Definition of new)
2: dynType(newP (c)) = c (Definition of new)

It remains only to check that for all fields, f ∈ dom(newP (c)) are well-formed. Pick an
f ∈ dom(newP (c)) = dom(FDP,c). Then:

3: FDP,c(f) = t (f ∈ dom(FDP,c), Defn FD)
4: P ⊢ t (3, Corollary 11)
5: newP (c)(f) = initial(t) (3, Defn of new)
6: P, ∅, σ ⊢ newP (c)(f) : t (4, 5, Lemma 9)
7: P, σ, newP (c) ⊢ f ⋄fld (2, 3, 6)

Therefore, all fields of a new instance of class c are well-formed:

8: ∀f ∈ dom(newP (c)) : P, σ, newP (c) ⊢ f ⋄fld (7, f arbitrary)
9: P, σ ⊢ newP (c) ⋄inst (1, 8, WFObject2)

So all new object instances are well-formed, which was to be shown. �

Corollary 13. Adding a new object to a well-formed heap gives a new well-formed heap:
P ⊢ σ ⋄heap ∧ ι 6∈ dom(σ) ⇒ P ⊢ σ[ι 7→ newP (c)] ⋄heap

Proof Let σ′ = σ[ι 7→ newP (c)] and pick arbitrary ι′ ∈ dom(σ′). Either ι = ι′, in which case
the instance at σ′(ι′) is well-formed by Lemma 12, or ι 6= ι′, so ι ∈ dom(σ), and the instance at
σ′(ι′) is well-formed by Lemma 8. �

Corollary 14. We note that new instances of Relation in a store are well-formed, assuming
the related objects are present, by WFRelInst1.

Lemma 15. Newly allocated relationship instances are well-formed. If:

Assumption 1: P ⊢ σ ⋄heap

Assumption 2: σ(ι) = 〈〈r′, , ι1, ι2|| . . .〉〉
Assumption 3: RP (r) = (r′, n1, n2, ,)
Assumption 4: ⊢ dynType(σ(ι1)) ≤ n1

Assumption 5: ⊢ dynType(σ(ι2)) ≤ n2

then P, σ ⊢ newPartP (r, ι, ι1, ι2) ⋄inst .

Proof

1: dom(newPartP (r, ι, ι1, ι2)) = dom(FP,r) (Defn of newPart)
2: dynType(newPartP (r, ι, ι1, ι2)) = r (Defn of newPart, dynType)

Pick arbitrary field f ∈ dom(FP,r):

3: FP,r(f) = t (f ∈ dom(FP,r))
4: newPartP (r, ι, ι1, ι2)(f) = initialP (t) (3, Defn of newPart)
5: P ⊢ t (3, Lemma 10)
6: P, ∅, σ ⊢ newPartP (r, ι, ι1, ι2)(f) : t (4, 5, Lemma 9)
7: P, σ, newPartP (r, ι, ι1, ι2) ⊢ f ⋄fld (2, 3, 6, WFField)

So fields in the new instance are well-formed:

8: ∀f ∈ dom(FP,r) : P, σ, newPartP (r, ι, ι1, ι2) ⊢ f ⋄fld (7, f arbitrary)

The super-instance of r must match r’s definition:

9: dynType(σ(ι)) = r′ (Assm. 2)
10: RP (r) = (dynType(σ(ι)), n1, n2, ,) (Assm. 3, 9)

So:

11: P, σ ⊢ newPartP (r, ι, ι1, ι2) ⋄inst (Assm. 4, Assm. 5, 1, 8, 10, WFRelInst2)

�

31

Lemma 16. Well-formed relationships unaffected by store extension. If:

Assumption 1: P, σ, ρ ⊢ (r, ι1, ι2) ⋄rel

Assumption 2: ι 6∈ dom(σ)
Assumption 3: σ′ = σ[ι 7→ o′]
Assumption 4: (r′, ι′1, ι

′

2) 6∈ dom(ρ)
Assumption 5: ρ′ = ρ[(r, ι′1, ι

′

2) 7→ ι′]

then P, σ′, ρ′ ⊢ (r, ι1, ι2) ⋄rel .

Proof P, σ, ρ ⊢ (r, ι1, ι2) ⋄rel can arise either by WFRelation1 or WFRelation2.

Case 1: Assm. 1 arises by WFRelation1
Then r = Relation and:

1: σ(ρ(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉 (Assm. 1, WFRelation1)
2: ρ(Relation, ι1, ι2) ∈ dom(σ) (1)
3: ρ(Relation, ι1, ι2) 6= (r′, ι′1, ι

′

2) (2,Assm. 4)
4: ρ′(Relation, ι1, ι2) = ρ(Relation, ι1, ι2) (3, Assm. 5, Definition 1)
5: σ(ρ′(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉 (1, 4)
6: ρ′(Relation, ι1, ι2) ∈ dom(σ) (5)
7: ρ′(Relation, ι1, ι2) 6= ι (Assm. 2, 6)
8: σ′(ρ′(Relation, ι1, ι2)) = σ(ρ′(Relation, ι1, ι2)) (Assm. 3, 7, Definition 1)
9: σ′(ρ′(Relation, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉 (5, 8)

10: P, σ′, ρ′ ⊢ (r = Relation, ι1, ι2) ⋄rel (9, WFRelation1)

Case 2: Assm. 1 arises by WFRelation2

11: RP (r) = (r′′, , , ,) (Assm. 1, WFRelation2)
12: (r′′, ι1, ι2) ∈ dom(ρ) (Assm. 1, WFRelation2)
13: σ(ρ(r, ι1, ι2)) = 〈〈r, ρ(r′′, ι1, ι2), ι1, ι2|| . . .〉〉 (Assm. 1, WFRelation2)
14: ρ(r, ι1, ι2) ∈ dom(σ) (13)
15: (r, ι1, ι2) ∈ dom(ρ) (14)
16: (r, ι1, ι2) 6= (r′, ι′1, ι

′

2) (15, Assm. 4)
17: (r′′, ι1, ι2) 6= (r′, ι′1, ι

′

2) (12, Assm. 4)
18: ρ(r, ι1, ι2) = ρ′(r, ι1, ι2) (16, Assm. 5, Definition 1)
19: ρ(r′′, ι1, ι2) = ρ′(r′′, ι1, ι2) (17, Assm. 5, Definition 1)
20: σ(ρ′(r, ι1, ι2)) = 〈〈r, ρ′(r′′, ι1, ι2), ι1, ι2|| . . .〉〉 (13, 18, 19)
21: ρ′(r, ι1, ι2) ∈ dom(σ) (20)
22: ρ′(r, ι1, ι2) 6= ι (21, Assm. 2)
23: σ′(ρ′(r, ι1, ι2)) = 〈〈r, ρ′(r′′, ι1, ι2), ι1, ι2|| . . .〉〉 (20, 22, Definition 1)
24: (r′′, ι1, ι2) ∈ dom(ρ′) (12, 19)
25: P, σ′, ρ′ ⊢ (r, ι1, ι2) ⋄rel (11, 23, 24, WFRelation2)

In both cases, therefore, the relationship is well-formed as required. �

Lemma 17. For all σ, σ′, ρ, ρ′, r and ι, ι1, ι2 ∈ dom(σ), where (σ′, ρ′) = addRelP (r, ι1, ι2, σ, ρ),
then σ(ι) = σ′(ι).

Proof The proof proceeds by induction on the height of r in the relationship inheritance tree.

Case 1: r = Relation

If (r, ι1, ι2) ∈ dom(ρ) then σ = σ′ and the result is immediate. Otherwise, σ′ = σ[ι′ 7→
newPartP (r, null, ι1, ι2)] with ι′ 6∈ dom(σ). Clearly ι 6= ι′ as ι ∈ dom(σ), so by Definition 1,
σ(ι) = σ′(ι).

32

Case 2: r 6= Relation

Again, if (r, ι1, ι2) ∈ dom(ρ) then the result is immediate. Otherwise, (σ′′, ρ′′) =
addRelP (r′, ι1, ι2, σ, ρ) where r′ is the super-relationship of r. By induction, σ′′(ι) = σ(ι).
The argument that σ′′(ι) = σ′(ι) then proceeds as above.

�

Lemma 18 (Safety of addRel). addRel preserves well-formed stores and relationship stores.
If:

Assumption 1: P ⊢ σ ⋄heap

Assumption 2: P, σ ⊢ ρ ⋄relheap

Assumption 3: (σ′, ρ′) = addRelP (r, ι1, ι2, σ, ρ)
Assumption 4: RP (r) = (, n1, n2, ,)
Assumption 5: ⊢ dynType(σ(ι1)) ≤ n1

Assumption 6: ⊢ dynType(σ(ι2)) ≤ n2

then P ⊢ σ′ ⋄heap , P, σ′ ⊢ ρ′ ⋄relheap and (r, ι1, ι2) ∈ dom(ρ′).

Proof
1: ∀ι′ ∈ dom(σ) : P, σ ⊢ σ(ι) ⋄inst (Assm. 1, WFHeap)
2: ∀(r′, ι′1, ι

′

2) ∈ dom(ρ) : P, σ, ρ ⊢ (r′, ι′1, ι
′

2) ⋄rel (Assm. 2, WFRelHeap)
We proceed by induction on the depth of r in the inheritance tree of P described by Lemma 3(a).

Case 1: r = Relation

If ∃ι′ : ρ(r, ι1, ι2) = ι′, then σ′ = σ and ρ′ = ρ and the result is immediate. Assume
therefore that (r, ι1, ι2) ∈ dom(ρ). Then:

3: σ′ = σ[ι 7→ newPartP (r, null, ι1, ι2)] (Defn of addRel)
4: ρ′ = ρ[(r, ι1, ι2) 7→ ι] (Defn of addRel)
5: ι 6∈ dom(σ) (Defn of addRel)
6: ∀ι′ ∈ dom(σ) : P, σ′ ⊢ σ′(ι′) ⋄inst (1, 3, 5)
7: ι1, ι2 ∈ dom(σ) (Assm. 5,Assm. 6, Defn of dynType)
8: ι1, ι2 ∈ dom(σ′) (3, Definition 1)
9: σ′(ι) = newPartP (r, null, ι1, ι2) = 〈〈Relation, null, ι1, ι2||〉〉 (3, Defn of newPart)

10: P, σ′ ⊢ σ′(ι) ⋄inst (8, 9, WFRelInst1)
11: ∀ι′ ∈ dom(σ′) : P, σ′ ⊢ σ′(ι′) ⋄inst (3, 6, 10)
12: P ⊢ σ′ ⋄heap (11, WFHeap)

We then show that the new relationship store is well-formed.

13: ∀(r′, ι′1, ι
′

2) ∈ dom(ρ) : P, σ′, ρ′ ⊢ (r′, ι′1, ι
′

2) ⋄rel (2, 3, 4, 5, Lemma 16)
14: ρ′(r, ι1, ι2) = ι (4)
15: σ′(ρ′(r, ι1, ι2)) = newPartP (r, null, ι1, ι2) (3, 14)
16: σ′(ρ′(r, ι1, ι2)) = 〈〈Relation, null, ι1, ι2||〉〉 (15, Defn of newPart, r = Relation)
17: P, σ′, ρ′ ⊢ (r, ι1, ι2) ⋄rel (16, WFRelation1)
18: ∀(r′, ι′1, ι

′

2) ∈ dom(ρ′) : P, σ′, ρ′ ⊢ (r′, ι′1, ι
′

2) ⋄rel (13, 17)
19: P, σ′ ⊢ ρ′ ⋄relheap (18, WFRelHeap)

Finally, it is clear that (r, ι1, ι2) ∈ dom(ρ′) by Statement 4 and Definition 1. Case com-
plete.

Case 2: r 6= Relation

20: R(r) = (r′, n1, n2, ,) (r 6= Relation)
21: (σ′′, ρ′′) = addRelP (r, ι1, ι2, σ, ρ) (r 6= Relation, Defn of addRel)
22: σ′ = σ′′[ι 7→ newPartP (r, ρ′′(r′, ι1, ι2), ι1, ι2)] (r 6= Relation, Defn of addRel)

33

23: ρ′ = ρ′′[(r, ι1, ι2) 7→ ι] (r 6= Relation, Defn of addRel)
24: ι 6∈ dom(σ′′) (r 6= Relation, Defn of addRel)

We now require the construction of the dynamic type constraints for use of the inductive
hypothesis:

25: P ⊢ r (20, WTProgram)
26: R(r′) = (, n′

1, n
′

2, ,) (20, 25 WTRelationship)
27: P ⊢ n1 ≤ n′

1 (25, 26, WTRelationship)
28: P ⊢ n2 ≤ n′

2 (25, 26, WTRelationship)
29: P ⊢ dynType(σ(ι1)) ≤ n′

1 (Assm. 5, 27, STTrans)
30: P ⊢ dynType(σ(ι2)) ≤ n′

2 (Assm. 6, 28, STTrans)

Then, by induction:

31: P ⊢ σ′′ ⋄heap (Assm. 1, Assm. 2, 21, 26, 29, 30, Inductive hypothesis)
32: P, σ′′ ⊢ ρ′′ ⋄relheap (Assm. 1, Assm. 2, 21, 26, 29, 30, Inductive hypothesis)
33: (r′, ι1, ι2) ∈ dom(ρ′′) (Assm. 1, Assm. 2, 21, 26, 29, 30, Inductive hypothesis)

We continue to show that the extension of these stores in Statements 22 and 23 leaves
them well-formed.

34: ∀ι′ ∈ dom(σ′′) : P, σ′′ ⊢ σ′′(ι′) ⋄inst (31, WFHeap)
35: ∀ι′ ∈ dom(σ′′) : P, σ′ ⊢ σ′(ι′) ⋄inst (22, 24, 34, Lemma 8)
36: ∀(r′′, ι′1, ι

′

2) ∈ dom(ρ′′) : P, σ′′, ρ′′ ⊢ (r′′, ι′1, ι
′

2) ⋄rel (32, WFRelHeap)
37: σ′(ι) = newPartP (r, ρ′′(r′, ι1, ι2), ι1, ι2) (22, Definition 1)
38: P, σ′′, ρ′′ ⊢ (r′, ι1, ι2) ⋄rel (33, 36)
39: σ′′(ρ′′(r′, ι1, ι2)) = 〈〈r′, , ι1, ι2|| . . .〉〉 (38, WFRelation1/2)
40: ⊢ dynType(σ′′(ι1)) ≤ n1 (Assm. 5, 21, Lemma 17)
41: ⊢ dynType(σ′′(ι2)) ≤ n2 (Assm. 6, 21, Lemma 17)
42: P, σ′′ ⊢ σ′(ι) ⋄inst (20, 31, 37, 40, 41, Lemma 15)
43: P, σ′ ⊢ σ′(ι) ⋄inst (22, 24, 42, Lemma 8)
44: ∀ι′ ∈ dom(σ′) : P, σ′ ⊢ σ′(ι′) ⋄inst (22, 35, 43)
45: P ⊢ σ′ ⋄heap (44, WFHeap)

For the relation store:

46: ∀(r′′, ι′1, ι
′

2) ∈ dom(ρ′′) : P, σ′, ρ′ ⊢ (r′′, ι′1, ι
′

2) ⋄rel (22, 23, 24, 36, Lemma 16)
47: ρ′(r, ι1, ι2) = ι (23, Definition 1)
48: σ′(ρ′(r, ι1, ι2)) = 〈〈r, ρ′′(r′, ι1, ι2), ι1, ι2|| . . .〉〉 (37, Defn newPart)
49: ρ′(r′, ι1, ι2) = ρ′′(r′, ι1, ι2) is defined (23, 33, r 6= r′, Definition 1)
50: σ′(ρ′(r, ι1, ι2)) = 〈〈r, ρ′(r′, ι1, ι2), ι1, ι2|| . . .〉〉 (48, 49)
51: P, σ′, ρ′ ⊢ (r, ι1, ι2) ⋄rel (20, 49, 50, WFRelation2)
52: ∀(r′, ι′1, ι

′

2) ∈ dom(ρ′) : P, σ′, ρ′ ⊢ (r′, ι′1, ι
′

2) ⋄rel (23, 46, 51)
53: P, σ′ ⊢ ρ′ ⋄relheap (52, WFRelHeap)

Finally, it is clear that ρ′(r, ι1, ι2) is defined, according to Statement 23. Case complete.

Therefore, addRel(r, ι1, ι2) leaves both heaps well-formed, and sets up a relationship r between
ι1 and ι2 in the relationship heap. �

Lemma 19 (Safety of remRel). remRel preserves well-formed relationship stores. If
P, σ ⊢ ρ ⋄relheap and ρ′ = remRelP (r, ι1, ι2, ρ), then P, σ ⊢ ρ′ ⋄relheap .

34

Proof Unfolding the definition of remRel:

ρ′ = remRelP (r, ι1, ι2, ρ)

= ρ \ {(r′, ι1, ι2) | ⊢ r′ ≤ r}

= {(r′, ι′1, ι
′

2) 7→ ρ(r′, ι′1, ι
′

2) | 6⊢ r′ ≤ r ∨ ι′1 6= ι1 ∨ ι′2 6= ι2}

Assume then that:

1: P, σ ⊢ ρ ⋄relheap

2: ∀(r′, ι′1, ι
′

2) ∈ dom(ρ) : P, σ, ρ ⊢ (r′, ι′1, ι
′

2) ⋄rel (1, WFRelHeap)

Pick arbitrary (r′, ι′1, ι
′

2) ∈ dom(ρ′). Then:

3: ρ′(r′, ι′1, ι
′

2) = ρ(r′, ι′1, ι
′

2) (Defn of ρ′)
4: P, σ, ρ ⊢ (r′, ι′1, ι

′

2) ⋄rel (2, (r′, ι′1, ι
′

2) ∈ dom(ρ′) ⊆ dom(ρ))

As (r′, ι′1, ι
′

2) ∈ dom(ρ), there are three cases according to the definition of ρ′:

Case 1: ι1 6= ι′1
Statement 4 can arise either by WFRelation1 or WFRelation2.

Case 1.1: Statement 4 arises by WFRelation1
Then r′ = Relation:

5: σ(ρ(r′, ι′1, ι
′

2)) = 〈〈Relation, null, ι1, ι2||〉〉 (4, WFRelation1)
6: σ(ρ′(r′, ι′1, ι

′

2)) = 〈〈Relation, null, ι1, ι2||〉〉 (5, 3)
7: P, σ, ρ′ ⊢ (r′, ι′1, ι

′

2) ⋄rel (6, WFRelation1)

Case 1.2: Statement 4 arises by WFRelation2
Then:

8: RP (r′) = (r′′, , , ,) (4, WFRelation2)
9: (r′′, ι′1, ι

′

2) ∈ dom(ρ) (4, WFRelation2)
10: σ(ρ(r′, ι′1, ι

′

2)) = 〈〈r′, ρ(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (4, WFRelation2)
11: ρ′(r′′, ι′1, ι

′

2) = ρ(r′′, ι′1, ι
′

2) (ι′1 6= ι1, Defn of ρ′)
12: (r′′, ι′1, ι

′

2) ∈ ρ (11, 9)
13: σ(ρ(r′, ι′1, ι

′

2)) = 〈〈r′, ρ′(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (10, 12)
14: σ(ρ′(r′, ι′1, ι

′

2)) = 〈〈r′, ρ′(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (3, 13)
15: P, σ, ρ′ ⊢ (r′, ι′1, ι

′

2) ⋄rel (8, 12, 14, WFRelation2)

Case 2: ι2 6= ι′2
Similar to previous case

Case 3: 6⊢ r′ ≤ r
Again, there are two possible origins for Statement 4:

Case 3.1: Statement 4 arises by WFRelation1
Similar to proof for WFRelation1 case above.

Case 3.2: Statement 4 arises by WFRelation2
Then:

16: RP (r′) = (r′′, , , ,) (4, WFRelation2)
17: (r′′, ι′1, ι

′

2) ∈ dom(ρ) (4, WFRelation2)
18: σ(ρ(r′, ι′1, ι

′

2)) = 〈〈r′, ρ(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (4, WFRelation2)
19: ⊢ r′ ≤ r′′ (16, STRel)
20: 6⊢ r′′ ≤ r (16, Lemma 3(e))
21: ρ′(r′′, ι′1, ι

′

2) = ρ(r′′, ι′1, ι
′

2) is defined (17, 20, Defn of ρ′)
22: σ(ρ(r′, ι′1, ι

′

2)) = 〈〈r′, ρ′(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (18, 21)

35

23: σ(ρ′(r′, ι′1, ι
′

2)) = 〈〈r′, ρ′(r′′, ι′1, ι
′

2), ι1, ι2|| . . .〉〉 (3, 22)
24: P, σ, ρ′ ⊢ (r′, ι′1, ι

′

2) ⋄rel (16, 21, 23, WFRelation2)

Therefore, P, σ, ρ′ ⊢ (r′, ι′1, ι
′

2) ⋄rel in all cases.
25: ∀(r′, ι′1, ι

′

2) ∈ dom(ρ′) : P, σ, ρ′ ⊢ (r′, ι′1, ι
′

2) ⋄rel ((r′, ι′1, ι
′

2) arbitrary)
26: P, σ ⊢ ρ′ ⋄relheap (25, WFRelHeap)

�

Lemma 20 (Safety of field update). Field update preserves well-formed fields. If:
Assumption 1: P, σ, o ⊢ f ⋄fld

Assumption 2: o′ = o[f 7→ u]
Assumption 3: P, ∅, σ ⊢ u : FDP,dynType(o)(f)

then P, σ, o′ ⊢ f ⋄fld .

Proof
1: dynType(o) = dynType(o′) = n (Assm. 1, Assm. 2, WFField)
2: FDP,n(f) = FDP,dynType(o)(f) = FDP,dynType(o′)(f) = t (Assm. 1, Assm. 2, WFField)
3: P, ∅, σ ⊢ o′(f) : t (Assm. 2, Assm. 3)
4: P, σ, o′ ⊢ f ⋄fld (1, 2, 3, WFField)

�

Corollary 21. A well-formed object updated in a well-typed way will remain well-formed:
P, σ ⊢ o ⋄inst ∧ f ∈ dom(o) ∧ P, ∅, σ ⊢ u : FDP,dynType(o)(f) ⇒ P, σ ⊢ o[f 7→ u] ⋄inst

Proof The proof is by Lemma 20 for the updated field, and by simple equality of Γ and σ for
the unaltered fields. We require f ∈ dom(o), in order to prevent super-relationship fields being
added to sub-relationship instances. �

Lemma 22 (Safety of object update — fields). Replacing an object in the store with an
object of the same dynamic type preserves well-formed fields. If:

Assumption 1: P, σ, o ⊢ f ⋄fld

Assumption 2: σ′ = σ[ι 7→ o′]
Assumption 3: dynType(o′) = dynType(σ(ι))

then P, σ′, o ⊢ f ⋄fld .

Proof
1: dynType(o) = n (Assm. 1, WFField)
2: FDP,n(f) = t (Assm. 1, WFField)
3: P, ∅, σ ⊢ o(f) : t (Assm. 1, WFField)

Case 1: t = boolean

Then P, ∅, σ′ ⊢ o(f) : t by DTBoolF/T.

Case 2: t ∈ NominalType

4: ⊢ dynType(σ(o(f))) ≤ t (3, DTAddr)

If o(f) = ι then dynType(σ(o(f))) = dynType(σ′(o(f))) by Statements Assm. 2
and Assm. 3. Otherwise, if o(f) 6= ι, then σ′(o(f)) = σ(o(f)) so dynType(σ(o(f))) =
dynType(σ′(o(f))) by Statement Assm. 2 and Definition 1. In either case:

5: ⊢ dynType(σ′(o(f))) ≤ t (4)
6: P, ∅, σ′ ⊢ o(f) : t (5, DTAddr)

Case 3: t = set<n ∈ NominalType>

36

7: ∀ι′ ∈ o(f) : P, ∅, σ ⊢ ι′ : n (3, DTSet)
8: ∀ι′ ∈ o(f) : P, ∅, σ′ ⊢ ι′ : n (7, Similar to previous case)
9: P, ∅, σ′ ⊢ o(f) : t (8, DTSet)

Thus, in all cases:

10: P, ∅, σ′ ⊢ o(f) : t (Case analysis)
11: P, σ, o ⊢ f ⋄fld (1, 2, 10, WFField)

�

Lemma 23 (Safety of object update — objects). Substitution with a new well-formed
object of the same type preserves well-formed objects. If:

Assumption 1: P, σ ⊢ o ⋄inst

Assumption 2: σ′ = σ[ι 7→ o′]
Assumption 3: dynType(o′) = dynType(σ(ι))

then P, σ′ ⊢ o ⋄inst .

Proof Firstly, we observe that all objects must retain their dynamic type:

1: ∀ι′ ∈ dom(σ) : dynType(σ(ι′)) = dynType(σ′(ι′)) (Assm. 3, Definition 1)

Then, Assm. 1 could arise by WFObject1, WFObject2, WFRelInst1 or WFRelInst2.
Proceed by case analysis:

Case 1: Statement Assm. 1 arises by WFObject1
Then o = 〈〈Object||〉〉, and the result follows immediately.

Case 2: Statement Assm. 1 arises by WFObject2
Then:

2: dom(o) = dom(FDP,c) (Assm. 1, WFObject2)
3: dynType(o) = c (Assm. 1, WFObject2)
4: ∀f ∈ dom(o) : P, σ, o ⊢ f ⋄fld (Assm. 1, WFObject2)
5: ∀f ∈ dom(o) : P, σ′, o ⊢ f ⋄fld (Assm. 2, Assm. 3, 4, Lemma 22)
6: P, σ ⊢ o ⋄inst (2, 3, 5, WFObject2)

Case 3: Statement Assm. 1 arises by WFRelInst1
Then o = 〈〈Relation, null, ι1, ι2||〉〉 and ι1, ι2 ∈ dom(σ). Clearly, ι1, ι2 ∈ dom(σ′), so the
result follows immediately by WFRelInst1.

Case 4: Statement Assm. 1 arises by WFRelInst2
Then o = 〈〈r, ι′, ι1, ι2|| . . .〉〉.

7: dom(o) = dom(FP,c) (Assm. 1, WFRelInst2)
8: ∀f ∈ dom(o) : P, σ, o ⊢ f ⋄fld (Assm. 1, WFRelInst2)
9: ∀f ∈ dom(o) : P, σ′, o ⊢ f ⋄fld (Assm. 2, Assm. 3, 8, Lemma 22)

10: RP (r) = (dynType(σ(ι′)), n1, n2, ,) (Assm. 1, WFRelInst2)
11: RP (r) = (dynType(σ′(ι′)), n1, n2, ,) (1, 10)
12: ⊢ dynType(σ(ι1)) ≤ n1 (Assm. 1, WFRelInst2)
13: ⊢ dynType(σ′(ι1)) ≤ n1 (1, 12)
14: ⊢ dynType(σ(ι2)) ≤ n2 (Assm. 1, WFRelInst2)
15: ⊢ dynType(σ′(ι2)) ≤ n2 (1, 14)
16: P, σ ⊢ o ⋄inst (7, 11, 13, 15, WFRelInst2)

Thus, in all cases, objects remain well-formed in a store under well-typed update, which was to
be shown. �

37

Corollary 24 (Safety of object update — heaps).
Well-typed object update preserves the heap’s well-formedness. If:
– P ⊢ σ ⋄heap

– f ∈ dom(σ(ι))
– P, Γ, σ ⊢ u : FDP,dynType(σ(ι))(f)

then P ⊢ σ[ι 7→ σ(ι)[f 7→ u]] ⋄heap .

Proof Let σ′ = σ[ι 7→ σ(ι)[f 7→ u]]. The updated object at σ′(ι) is well-formed by Corollary 21.
All other objects in σ′ are well-formed by Lemma 23 (as the dynamic type of the substituted
σ(ι)[f 7→ u] object is clearly the same as σ(ι)). �

Lemma 25 (Objects match definition). P ⊢ σ ⋄heap ∧ dynType(σ(ι)) = n ∧ f ∈
dom(FDP,n) ⇒ (σ, ι, f) ∈ dom(fld)

Proof Pick arbitrary (σ, ι, f) such that P ⊢ σ ⋄heap , dynType(σ(ι)) = n and f ∈ dom(FDP,n).
Then the object σ(ι) must be well-formed by WFHeap.

If σ(ι) is an instance of Object, then dom(FDP,n) = ∅, so this case does not arise.
If σ(ι) is an instance of a class, then dom(FDP,n) = dom(σ(ι)) by WFObject2, and

FDP,n(f) = σ(ι)(f), which is defined as required.
Suppose σ(ι) is an instance of a relationship, then the remainder of the proof proceeds by

induction on the depth of n in the relationship hierarchy determined by Lemma 3(a).
If σ(ι) is an instance of Relation, then dom(FDP,n) = ∅, so this case does not arise.
Then if f ∈ dom(FP,n), then f ∈ dom(σ(ι)) by WFRelInst2 as required. If f 6∈ dom(FP,n)

then it must be that f ∈ dom(FDP,r′) where RP (n) = (r′, , , ,) by definition of FDP,n. By
induction, (σ, ι, f) ∈ dom(fld) as required. �

Lemma 26. P ⊢ σ ⋄heap ∧ dynType(σ(ι)) = n ∧ f ∈ dom(FDP,n) ⇒ (σ, ι, f, u) ∈ dom(fldUpd)

Proof Proof is as for Lemma 25, above. �

Lemma 27 (Safety of fld). If:
– P ⊢ σ ⋄heap

– P, Γ, σ ⊢ ι : n
– FDP,n(f) = t

then P, Γ, σ ⊢ fld(σ, ι, f) : t.

Proof By Lemma 25, fld(σ, ι, f) = u. The result follows by WFHeap. �

Lemma 28 (Safety of fldUpd).
fldUpd preserves σ’s well-formedness. If:
– P ⊢ σ ⋄heap

– P, Γ, σ ⊢ u : FDP,dynType(σ(ι))(f)
– σ′ = fldUpd(σ, ι, f, u)

Then P ⊢ σ′ ⋄heap .

Proof fldUpd(σ, ι, f, u) is defined by Lemma 26. fldUpd then either takes no action or returns
a σ updated as in Corollary 24. �

Lemma 29 (Safety of store extension — typing). Values typable with any well-formed
store are also typable with any (possibly larger) store whose objects have the same dynamic type.

– P ⊢ σ ⋄heap

– P ⊢ σ′ ⋄heap

– dynType(σ(ι)) = t ⇒ dynType(σ′(ι)) = t

38

– P, Γ, σ ⊢ e : t

then P, Γ, σ′ ⊢ e : t. Similarly statements and statement sequences.

Proof sketch By induction on the derivation of P, Γ, σ ⊢ e : t:

Case 1: Derivation ends in DTAddr
Then u = ι and ⊢ dynType(σ(ι)) ≤ t. But dynType(σ′(ι)) = dynType(σ(ι)), so
⊢ dynType(σ′(ι)) ≤ t and by DTAddr, P, Γ, σ′ ⊢ ι : t.

Case 2: Derivation ends in DTSet
Then u = {ι1, . . . , ιn} and t = set<n> and for every ιi P, Γ, σ ⊢ ιi : n. By induction, for
every ιi, P, Γ, σ′ ⊢ ιi : n, and the result follows by DTSet

The remaining cases do not rely on σ and follow by direct induction. �

Corollary 30 (Safety of store extension — locals). Well-formed locals stores are preserved
under the same conditions as in Lemma 29:

Assumption 1: P ⊢ σ1 ⋄heap

Assumption 2: P, Γ, σ1 ⊢ λ ⋄locals

Assumption 3: dynType(σ1(ι)) = t ⇒ dynType(σ2(ι)) = t

then P, Γ, σ2 ⊢ λ ⋄locals .

Proof An immediate consequence of Lemma 29 and WFLocals. �

Lemma 31 (Safety of store extension — relationships). With two well-formed stores,
where the objects in the first have the same dynamic types as those in the second, well-formed
relationships are preserved. Suppose

Assumption 1: P ⊢ σ ⋄heap

Assumption 2: P ⊢ σ′ ⋄heap

Assumption 3: σ(ι) = 〈〈r, , ι1, ι2|| 〉〉 ⇒ σ′(ι) = 〈〈r, , ι1, ι2|| 〉〉
Assumption 4: P, σ, ρ ⊢ (r, ι1, ι2) ⋄rel

then P, σ′, ρ ⊢ (r, ι1, ι2) ⋄rel .

Proof By inspection of the rules WFRelation1 and WFRelation2. �

Corollary 32 (Safety of store extension — relationship heap).
Under the conditions of Lemma 31, P, σ′ ⊢ ρ ⋄relheap , by WFRelHeap.

Lemma 33 (Safety of variable update). Well-typed updates of local variables preserve local-
store’s well-formedness. If:

– P, Γ, σ ⊢ λ ⋄locals

– λ′ = λ[x 7→ u]
– P, Γ, σ ⊢ u : Γ(x)

then P, Γ, σ ⊢ λ′ ⋄locals .

Proof Pick arbitrary x′ ∈ dom(λ′). It must be shown that P, Γ, σ ⊢ λ′(x′) : Γ(x′). If x 6= x′,
then x′ ∈ dom(λ). As λ is well-formed, then P, Γ, σ ⊢ λ(x′) : Γ(x′) by GoodLocals. Clearly
λ(x) = λ′(x′), so P, Γ, σ ⊢ λ′(x′) : Γ(x′) as required.

Where x′ = x, P, Γ, σ ⊢ u : Γ(x) by assumption. As all locals are typed consistently with the
typing environment, then, P, Γ, σ ⊢ λ′ ⋄locals . �

Lemma 34 (Context Weakening). Extension of the typing environment preserves typing:
P, Γ1, σ ⊢ e : t and Γ1 ⊆ Γ2 implies P, Γ2, σ ⊢ e : t. Similarly for P, Γ1, σ ⊢ s.

39

Proof sketch Result follows obviously from DTVar, then by straight-forward induction over
other typing rules. We give only two cases, by way of example:

Case 1: e = x
By DTVar, Γ1(x) = t. Γ1 ⊆ Γ2, so Γ2(x) = t. By DTVar, P, Γ2, σ ⊢ e : t as required.

Case 2: e = e′.f
By DTFld, P, Γ1, σ ⊢ e′ : n and FDn(f) = t. By induction, P, Γ2, σ ⊢ e′ : n. DTFld
yields P, Γ1, σ ⊢ e′.f : t as required.

The rest of the proof proceeds similarly. �

Lemma 35 (Soundness of context substitution).
If:

– P, Γ, σ ⊢ e1 : t1
– P, Γ, σ ⊢ e2 : t2
– P ⊢ t2 ≤ t1

then for any context E,

(a) P, Γ, σ ⊢ E [e1] : t3 ⇒ P, Γ, σ ⊢ E [e2] : t4 ∧ P ⊢ t4 ≤ t3 and

(b) P, Γ, σ ⊢ E [e1] ⇒ P, Γ, σ ⊢ E [e2].

Proof By induction on the derivation of P, Γ, σ ⊢ E [e1] : t1 and P, Γ, σ ⊢ E [e1]. Notice that E
is either an expression context, in which case E [e1] ∈ DynExpression or a statement context, in
which case E [e1] ∈ DynStatement. As DynExpression ∩ DynStatement = ∅, at most one of the
above typings can hold for any given context/expression pair.

Case 1: Derivation ends with DTBoolT, DTBoolF, DTNull, DTAddr, DTSet, DTVar
or DTNew
Then P, Γ, σ ⊢ E [e1] : t and E = •. The result follows immediately from the assumptions.

Case 2: Derivation ends with DTEq
Then E [e1] = (e3 == e4) where E = (E ′

e == e4) or E = (e3 == E ′

e).

Suppose that E = (E ′

e == e4). Then, by DTEq, P, Γ, σ ⊢ E ′

e[e1] : n1 where n1 = t1,
P, Γ, σ ⊢ e : n′, and t3 = boolean. By induction, P, Γ, σ ⊢ E ′

e[e2] : n2 where P ⊢ n2 ≤ n1

and n2 = t2. Then, by DTEq, P, Γ, σ ⊢ E [e2] : boolean and t3 = t4 as required.

The case where E = (e3 == E ′

e) proceeds similarly.

Case 3: Derivation ends with DTFld
Then E [e1] = e3.f where E = E ′

e.f .

Then, by DTFld, P, Γ, σ ⊢ E ′

e[e1] : n where n = t1 and FDn(f) = t3. By induction,
P, Γ, σ ⊢ E ′

e[e2] : n′ where n′ = t2 and P ⊢ n′ ≤ n, and by Lemma 4, FDn′(f) = t3. By
DTFld, P, Γ, σ ⊢ E [e2] : t3 so t3 = t4 as required.

Case 4: Derivation ends with DTRelObj
Then E [e1] = e3.r where E = E ′

e.r.

Then by DTRelObj, t3 = set<n3>, P, Γ, σ ⊢ E ′

e[e1] : n1, R(r) = (, n2, n3, ,) and
P ⊢ n1 ≤ n2. By induction, P, Γ, σ ⊢ E ′

e[e2] : n′

1 and P ⊢ n′

1 ≤ n1, so P ⊢ n′

1 ≤ n2 by tran-
sitivity of subtyping. By DTRelObj, then, P, Γ, σ ⊢ E [e2] : set<n3> as required.

Case 5: Derivation ends with DTRelInst
Similar to previous case.

40

Case 6: Derivation ends with DTFrom
Then E [e1] = e3.from and E = E ′

e.from.

By DTFrom, P, Γ, σ ⊢ E ′

e[e1] : r1, R(r1) = (, n1, , ,) and t3 = n1. By induction,
P, Γ, σ ⊢ E ′

e[e2] : t′ and P ⊢ t′ ≤ r1. By Lemma 3(h), t′ = r2, R(r2) = (, n2, , ,) and
P ⊢ n2 ≤ n1 by the covariance portion of WTRelationship. DTFrom then yields
P, Γ, σ ⊢ Ee[e2] : n2 where P ⊢ n2 ≤ n1 as required.

Case 7: Derivation ends with DTTo
Similar to above.

Case 8: Derivation ends with DTAdd
Then E [e1] = e3 + e4 and E = E ′

e + e4 or e3 ∈ DynValue and E = e3 + E ′

e.

Case 8.1: E = E ′

e + e4

Then by DTAdd, t3 = set<n3>, P, Γ, σ ⊢ E ′

e[e1] : set<n1>, P, Γ, σ ⊢ e4 : n′,
P ⊢ n′ ≤ n3 and P ⊢ n1 ≤ n3. By induction, P, Γ, σ ⊢ E ′

e[e2] : t′2 and
P ⊢ t′2 ≤ set<n1>, so by Lemma 3(i) t′2 = set<n2>. P ⊢ n2 ≤ n1 by STCov and
P ⊢ n2 ≤ n3 by transitivity of subtyping. Finally, by DTAdd, P, Γ, σ ⊢ Ee[e2] : n3 as
required.

Case 8.2: E = e3 + E ′

e

Then by DTAdd, t3 = set<n3>, P, Γ, σ ⊢ e3 : set<n′>, P, Γ, σ ⊢ E ′

e[e1] : n1,
P ⊢ n′ ≤ n3 and P ⊢ n1 ≤ n3. By induction, P, Γ, σ ⊢ E ′

e[e2] : n2 where P ⊢ n2 ≤ n1

implying P ⊢ n2 ≤ n3 by transitivity of subtyping. By DTAdd, P, Γ, σ ⊢ Ee[e2] : n3

as required.

Case 9: Derivation ends with DTSub
Similar to case above.

Case 10: Derivation ends with DTAss
Then E [e1] = x = E ′

e and E = x = •.

By DTAss, x 6= this, P, Γ, σ ⊢ x : t, P, Γ, σ ⊢ E ′

e[e1] : t′ and P ⊢ t′ ≤ t. By induction,
P, Γ, σ ⊢ E ′

e[e2] : t′′ where P ⊢ t′′ ≤ t′. Then, P ⊢ t′′ ≤ t by transitivity and the required
result follows by DTAss.

Case 11: Derivation ends with DTFldAss
Then E [e1] = e3.f = e4 and E = •.f = e4 or e3 ∈ DynValue and E = e3.f = e4.

Case 11.1: E = E ′

e.f = e4

By DTFldAss, P, Γ, σ ⊢ E ′

e[e1] : n1, P, Γ, σ ⊢ e : t, FDn1
(f) = t′ and P ⊢ t ≤ t′. By

induction, P, Γ, σ ⊢ E ′

e[e2] : n2 where P ⊢ n2 ≤ n1. By Lemma 4, FDn2
(f) = t′. By

DTFldAss, P, Γ, σ ⊢ E ′

e[e2].f = e : n2, recalling that P ⊢ n2 ≤ n1 as required.

Case 11.2: E = e3.f = E ′

e

By DTFldAss, P, Γ, σ ⊢ e3 : n, P, Γ, σ ⊢ E ′

e[e1] : t, FDn(f) = t′ and P ⊢ t ≤ t′. By
induction, P, Γ, σ ⊢ E ′

e[e2] : t′′, where P ⊢ t′′ ≤ t, so P ⊢ t′′ ≤ t′ by transitivity of sub-
typing. DTFldAss then yields P, Γ, σ ⊢ e3.f = E ′

e[e2] : t′′ as required.

Case 12: Derivation ends with DTRelAdd
Then E [e1] = r.add(e3,e4) so E = r.add(E ′

e,e4) or e3 ∈ DynValue and E = r.add(e3,E
′

e).

Case 12.1: E = r.add(E ′

e,e4)

41

By DTRelAdd, R(r) = (, n1, n2, ,), P, Γ, σ ⊢ E ′

e[e1] : n3, P, Γ, σ ⊢ e4 : n4,
P ⊢ n3 ≤ n1, P ⊢ n4 ≤ n2 and t3 = r.

By induction, P, Γ, σ ⊢ E ′

e[e2] : n5 and P ⊢ n5 ≤ n3, so P ⊢ n5 ≤ n1 by transitivity of
subtyping. P, Γ, σ ⊢ r.add(E ′

e[e2],e4) : r follows by DTRelAdd where t3 = r = t4
as required.

Case 12.2: E = r.add(e3,E
′

e)

By DTRelAdd, R(r) = (, n1, n2, ,), P, Γ, σ ⊢ e3 : n3, P, Γ, σ ⊢ E ′

e[e1] : n4,
P ⊢ n3 ≤ n1, P ⊢ n4 ≤ n2 and t3 = r.

By induction, P, Γ, σ ⊢ E ′

e[e2] : n5, where P ⊢ n5 ≤ n4 so P ⊢ n5 ≤ n2 by transitivity
of subtyping. P, Γ, σ ⊢ r.add(e3,E

′

e[e2]) : r follows by DTRelAdd where t3 = r = t4
as required.

Case 13: Derivation ends with DTRelRem
Then E [e1] = r.rem(e3,e4) and E = r.rem(E ′

e,e4) or e3 ∈ DynValue and E =
r.rem(e3,E

′

e).

Case 13.1: E = r.rem(E ′

e,e4)

By DTRelRem, R(r) = (, n1, n2, ,), P, Γ, σ ⊢ E ′

e[e1] : n3, P, Γ, σ ⊢ e4 : n4,
P ⊢ n3 ≤ n1, P ⊢ n4 ≤ n2 and t3 = r.

By induction, P, Γ, σ ⊢ E ′

e[e2] : n5 and P ⊢ n5 ≤ n3, so P ⊢ n5 ≤ n1 by transitivity of
subtyping. P, Γ, σ ⊢ r.rem(E ′

e[e2],e4) : r then follows by DTRelRem where t3 =
r = t4 as required.

Case 13.2: E = r.rem(e3,E
′

e)

By DTRelRem, R(r) = (, n1, n2, ,), P, Γ, σ ⊢ e3 : n3, P, Γ, σ ⊢ E ′

e[e1] : n4,
P ⊢ n3 ≤ n1, P ⊢ n4 ≤ n2 and t3 = r.

By induction, P, Γ, σ ⊢ E ′

e[e2] : n5 and P ⊢ n5 ≤ n4, so P ⊢ n5 ≤ n2 by transitivity of
subtyping. P, Γ, σ ⊢ r.rem(e3,E

′

e[e2]) : r then follows by DTRelRem where t3 =
r = t4 as required.

Case 14: Derivation ends with DTCall
Then E [e1] = e3.m(e4) so E = E ′

e.m(e4) or e3 ∈ DynValue and E = e3.m(E ′

e).

Case 14.1: E = E ′

e.m(e4)

By DTCall, P, Γ, σ ⊢ E ′

e[e1] : n, P, Γ, σ ⊢ e4 : t, MDn(m) = (x, , t′, t3,) and
P ⊢ t ≤ t′.

By induction, P, Γ, σ ⊢ E ′

e[e2] : n′ where P ⊢ n′ ≤ n. By Lemma 5, MDn′(m) =
(x, , t′′, t4,) and P ⊢ t′ ≤ t′′ and P ⊢ t4 ≤ t3. By transitivity of subtyping,
P ⊢ t ≤ t′′, so P, Γ, σ ⊢ E ′

e[e2].m(e4) : t4 then follows by DTCall, with P ⊢ t4 ≤ t3
as required.

Case 14.2: E = e3.m(E ′

e)

By DTCall, P, Γ, σ ⊢ e3 : n, P, Γ, σ ⊢ E ′

e[e1] : t, MDn(m) = (x, , t′, t3,) and
P ⊢ t ≤ t′.

By induction P, Γ, σ ⊢ E ′

e[e2] : t′′ where P ⊢ t′′ ≤ t. By transitivity of subtyping,
P ⊢ t′′ ≤ t′. P, Γ, σ ⊢ e3.m(E ′

e[e2]) : t3 then follows by DTCall.

Case 15: Derivation ends with DTMethBody
Then E [e1] = { s return e; } and E = { Es return e; } or E = { return E ′

e; }.

42

Case 15.1: E = { E ′

s return e; }
Then by DTMethBody, P, Γ, σ ⊢ e : t3 and P, Γ, σ ⊢ E ′

s[e1]. By induction,
P, Γ, σ ⊢ E ′

s[e2], so P, Γ, σ ⊢ E [e2] : t3 by DTMethBody as required.

Case 15.2: E = { return E ′

e; }
Then by DTMethBody, P, Γ, σ ⊢ ǫ and P, Γ, σ ⊢ Ee[

′]e1 : t3. By induction,
P, Γ, σ ⊢ Ee[

′]e2 : t4 and P ⊢ t4 ≤ t3. By DTMethBody, P, Γ, σ ⊢ E [e2] : t4 as re-
quired.

Case 16: Derivation ends with DTSkip
This case does not arise, as ǫ is neither an expression to be substituted in E = •, nor is it
a context.

Case 17: Derivation ends with DTFor
Then E [e1] = for (n x : e3) {s1}; s2 and E = for (n x : E ′

e) {s1}; s2.

By DTFor, P, Γ, σ ⊢ E ′

e[e1] : set<n2>, P, Γ[x 7→ n1], σ ⊢ s1, P, Γ, σ ⊢ s2, x 6∈ dom(Γ) and
P ⊢ n2 ≤ n1.

By induction, P, Γ, σ ⊢ E ′

e[e2] : t′ where P ⊢ t′ ≤ set<n2>. By Lemma 3(i), t′ = set<n′>

where P ⊢ n′ ≤ n2, so P ⊢ n′ ≤ n1 by transitivity of subtyping. Therefore, by DTFor,
P, Γ, σ ⊢ for (n1 x : E ′

e[e2]) {s1}; s2 as required.

Case 18: Derivation ends with DTCond
Then E [e1] = if (e1) {s1} else {s2}; s3 and E = if (E ′

e) {s1} else {s2}; s3.

By DTCond, P, Γ, σ ⊢ E ′

e[e1] : boolean, P, Γ, σ ⊢ s1, P, Γ, σ ⊢ s2 and P, Γ, σ ⊢ s3.

By induction, P, Γ, σ ⊢ E ′

e[e2] : t′ where P ⊢ t′ ≤ boolean. By Lemma 3(j) t′ = boolean.
Finally, DTCond yields P, Γ, σ ⊢ if (Ee[

′]e2) {s1} else {s2}; s3 as required.

�

Lemma 36 (Typable sub-expressions). If P, Γ, σ ⊢ E [e] : t or P, Γ, σ ⊢ E [e] then
P, Γ, σ ⊢ e : t′.

Proof sketch By induction on the structure of the typing derivation. For example, in the case
where the derivation of P, Γ, σ ⊢ E [e] : t ends with DTFld, then either:

Case 1: E = •
In which case P, Γ, σ ⊢ e : t as required by assumption.

Case 2: E = Ee.f
In which case P, Γ, σ ⊢ Ee[e] : t′′ by DTFld. By induction, P, Γ, σ ⊢ e : t′ as required.

All other cases proceed similarly. �

Lemma 37. All object dynamic types are subtypes of Object:
P ⊢ σ ⋄heap ∧ σ(ι) = o ⇒ ⊢ dynType(o) ≤ Object

Proof As P ⊢ σ ⋄heap , then P, σ ⊢ o ⋄inst . If by WFObject1, then dynType(o) = Object

and the result follows by reflexivity. If by WFObject2, then dom(o) = dom(FP,c) where
c = dynType(o), and by definition of FP,c, c ∈ dom(CP). By Lemma 3(a), ⊢ c ≤ Object as
required. Similarly for WFRelInst1 and WFRelInst2 respectively, with the addition that
⊢ Relation ≤ Object by STObject. �

Lemma 38 (Subsumption for values). P, Γ, σ ⊢ u : t ∧ P ⊢ t ≤ t′ ⇒ P, Γ, σ ⊢ u : t′

43

Proof By induction on the derivation of P, Γ, σ ⊢ u : t.

Case 1: Derivation ends DTAddr
Then P ⊢ dynType(σ(u)) ≤ t. By transitivity of subtyping, P ⊢ dynType(σ(u)) ≤ t′, so
P, Γ, σ ⊢ u : t′ as required.

Case 2: Derivation ends DTSet
Then t = set<n> and ∀ι ∈ u : P, Γ, σ ⊢ ι : n. By Lemma 3(i), t′ = set<n′>. By STCov,
P ⊢ n ≤ n′. By induction, ∀ι ∈ u : P, Γ, σ ⊢ ι : n′. By DTSet, P, Γ, σ ⊢ u : t′ as required.

Case 3: Derivation ends DTBoolF/DTBoolT
Then u ∈ {true, false}. t′ = boolean by Lemma 3(j). The result follows trivially.

Case 4: Derivation ends DTNull
Then t = n, so t′ = n′ by Lemma 3(g). The result follows trivially.

�

Lemma 39 (Typing preserved by renaming).
Consistent variable freshening preserves typing. If P, Γ, σ ⊢ e : t and x′ 6∈ dom(Γ) then

P, Γ[x′ 7→ Γ(x)], σ ⊢ e[x′/x] : t. Similarly for statements.

Proof The proof is by straightforward induction on the derivation of the typing relation, and
is omitted. �

Lemma 40 (Typing preserved under statement concatenation).
If P, Γ, σ ⊢ s1 and P, Γ, σ ⊢ s2 then P, Γ, σ ⊢ s1s2.

Proof Induction on the structure of the derivation of P, Γ, σ ⊢ s1.
If the derivation ends in DTSkip, then s1 = ǫ and s1s2 = s2 and the result follows trivially.
If the derivation ends in DTFor, then s1 = for (n x : e) {s3}; s4, P, Γ[x 7→ n], σ ⊢ s3 and

P, Γ, σ ⊢ s4. By induction, P, Γ, σ ⊢ s4s2. By DTFor, then P, Γ, σ ⊢ for (n x : e) {s3}; s4 s2

as required.
Similarly for derivations ending in DTCond. �

Theorem 41 (Subject Reduction).
If:
– P ⊢ σ1 ⋄heap

– P, σ1 ⊢ ρ1 ⋄relheap

– P, Γ1, σ ⊢ λ1 ⋄locals

– P, Γ1, σ1 ⊢ R : t1 or P, Γ1, σ1 ⊢ R
– 〈Γ1, σ1, ρ1, λ1, R〉 P

 〈Γ2, σ2, ρ2, λ2, R
′〉 or 〈Γ2, σ2, ρ2, λ2, w〉

then:
(a) P ⊢ σ2 ⋄heap and

(b) P, σ2 ⊢ ρ2 ⋄relheap and

(c) P, Γ2, σ2 ⊢ λ2 ⋄locals and

(d) Γ1 ⊆ Γ2 and

(e) dynType(σ1(ι)) = t ⇒ dynType(σ2(ι)) = t and

(f) where execution is not to an error:

P, Γ1, σ1 ⊢ R1 : t1 ⇒ P, Γ2, σ2 ⊢ R2 : t2 and P ⊢ t2 ≤ t1

P, Γ1, σ1 ⊢ R1 ⇒ P, Γ2, σ2 ⊢ R2

44

Proof By induction on the structure of the derivation of the execution step. Notice that at
most one of P, Γ1, σ1 ⊢ R1 : t1 or P, Γ1, σ1 ⊢ R1 holds for any term, as R1 is either an expression
or a statement.

Case 1: Derivation ends with OSContextE
Then R1 = Ee[e3]. By Lemma 36, P, Γ1, σ1 ⊢ e3 : t3. By OSContextE, 〈Γ1, σ1, ρ1, λ1, e3〉
executes either to:

P

 〈Γ2, σ2, ρ2, λ2, e4〉 Then by induction P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap ,
P, Γ2, σ2 ⊢ λ2 ⋄locals , Γ1 ⊆ Γ2, dynType(σ1(ι)) = t ⇒ dynType(σ2(ι)) = t and
P, Γ2, σ2 ⊢ e4 : t4 where P ⊢ t4 ≤ t3. By Lemma 35, P, Γ2, σ2 ⊢ Ee[e4] : t2 where
P ⊢ t2 ≤ t1 as required.

P

 〈Γ2, σ2, ρ2, λ2, w
′〉 Then by induction P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap ,

P, Γ2, σ2 ⊢ λ2 ⋄locals , Γ1 ⊆ Γ2 and dynType(σ1(ι)) = t ⇒ dynType(σ2(ι)) = t.
By definition of Error, w = Ee[w

′] as required.

Case 2: Derivation ends with OSContextS
Then R1 = Es[e3], and by Lemma 36, P, Γ1, σ1 ⊢ e3 : t3.

Either 〈Γ1, σ1, ρ1, λ1, R1〉:
P

 〈Γ2, σ2, ρ2, λ2, R2〉 in which case R2 = Es[e4] and 〈Γ1, σ1, ρ1, λ1, e4〉
P

 〈Γ2, σ2, ρ2, λ2, e4〉
by induction, where P, Γ2, σ2 ⊢ e4 : t4 where P ⊢ t4 ≤ t3. By Lemma 35,
P, Γ2, σ2 ⊢ Es[e4] as required.

P

 〈Γ2, σ2, ρ2, λ2, w〉 in which case w = Es[w
′]. The remaining results follow by induction

on 〈Γ1, σ1, ρ1, λ1, e3〉
P

 〈Γ2, σ2, ρ2, λ2, w
′〉.

That P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap , P, Γ2, σ2 ⊢ λ2 ⋄locals , dynType(σ1(ι)) = t ⇒
dynType(σ2(ι)) and Γ1 ⊆ Γ2 follow by the use of induction in both cases.

Case 3: Derivation ends with OSInBody
Then R1 = { s1 return e; }.

If R1 executes to a new term, then R2 = { s′ return e; } where

〈Γ1, σ1, ρ1, λ1, s〉
P

 〈Γ2, σ2, ρ2, λ2, s2〉. By induction, P, Γ2, σ2 ⊢ s2.

If R1 executes to an exception, then w = { w′ return e; } where

〈Γ1, σ1, ρ1, λ1, s1〉
P

 〈Γ2, σ2, ρ2, λ2, w
′〉.

In both cases, by induction, P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap , P, Γ2, σ2 ⊢ λ2 ⋄locals Γ1 ⊆ Γ2

and the dynamic types of objects in σ1 are preserved in σ2.

Case 4: Derivation ends with OSEmpty
Then R1 = empty, R2 = ∅, Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2. By TSEmpty,
P, Γ, σ ⊢ empty : n for some n. By DTSet, P, Γ, σ ⊢ ∅ : n, as there is no ι ∈ ∅ for which
the dynamic type must be checked. Γ2, σ2, ρ2 and λ2 are trivially well-formed by equality.
Case complete.

Case 5: Derivation ends with OSNew
Then R1 = new c() and by DTNew P, Γ1, σ1 ⊢ R1 : c. σ2 = σ1[ι 7→ newP (c)], where
ι 6∈ dom(σ1), so P ⊢ σ2 ⋄heap by Corollary 13. Old relationship instances are untouched
by the update, so by Corollary 32, P, σ2 ⊢ ρ2 ⋄relheap . But ρ2 = ρ1, so P, σ2 ⊢ ρ2 ⋄relheap .
λ2 = λ1 and Γ2 = Γ1 so P, Γ2, σ2 ⊢ λ2 ⋄locals .

Finally, R2 = ι and dynType(σ2(ι)) = c by definition of new. Clearly, then P, Γ2, σ2 ⊢ R2 : c
as required. Case complete.

45

Case 6: Derivation ends with OSEq
Then R1 = u == u′, R2 = true and t1 = boolean. By DTBoolT,
P, Γ1, σ1 ⊢ true : boolean as required. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2, and so
are trivially well-formed. Case complete. Similarly where derivation ends with OSNeq.

Case 7: Derivation ends with OSBody
Then R1 = { return u; }, R2 = u, P, Γ1, σ1 ⊢ { return u; } : t1. By DTMeth-
Body, P, Γ1, σ1 ⊢ u : t1. Γ1 = Γ2, σ1 = σ2, λ1 = λ2 and ρ1 = ρ2 so P ⊢ σ2 ⋄heap ,
P, σ2 ⊢ ρ2 ⋄relheap , P, Γ2, σ2 ⊢ λ2 ⋄locals and P, Γ2, σ2 ⊢ u : t1 as required.

Case 8: Derivation ends with OSVar
Then R1 = x, R2 = λ(x), t1 = Γ(x). By WFLocals, P, Γ, σ ⊢ λ(x) : Γ(x), so t2 = Γ(x) =
t1. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2, and so are trivially well-formed. Case complete.

Case 9: Derivation ends with OSFldN
Then R1 executes to w = NullPtrError, where Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2

and all are well-formed as required. Similarly for derivations ending with OSRelObjN,
OSRelInstN, OSFldAssN, OSFldAddN, OSFldSubN, OSRelAddN, OSRelSubN
or OSCallN

Case 10: Derivation ends with OSFld
Then R1 = ι.f , R2 = fld(σ, ι, f). By DTFld, P, Γ, σ ⊢ ι : n and t1 = FDP,n(f). By
Lemma 27, P, Γ, σ ⊢ fld(σ, ι, f) : t1, so t1 = t2 as required. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2,
λ1 = λ2, and so are trivially well-formed. Case complete.

Case 11: Derivation ends with OSRelObj
Then R1 = ι.r and R2 = {ι′ | ∃ι′′ : ρ1(r, ι, ι

′) = ι′′}. By DTRelObj,
P, Γ1, σ1 ⊢ R1 : set<n2> where RP (r) = (, n1, n2, ,), P, Γ1, σ1 ⊢ ι : n3, and ⊢ n3 ≤ n1.
Pick arbitrary ι′ ∈ R2; then, (r, ι, ι′) ∈ dom(ρ1) and by WFRelHeap,
P, σ1, ρ1 ⊢ (r, ι, ι′) ⋄rel . By WFRelation1 and WFRelation2, σ1(ρ1(r, ι, ι

′)) =
〈〈r, ι, ι′, || . . .〉〉 so by WFHeap, P, σ ⊢ 〈〈r, ι, ι′, || . . .〉〉 ⋄inst . If P, σ ⊢ 〈〈r, ι, ι′, || . . .〉〉 ⋄inst

by WFRelInst1, then r = Relation and n2 = Object. Also, ι′ ∈
dom(σ) so by Lemma 37, ⊢ dynType(σ1(ι

′)) ≤ Object and P, Γ1, σ1 ⊢ ι′ : n2. Other-
wise, if P, σ ⊢ 〈〈r, ι, ι′, || . . .〉〉 ⋄inst by WFRelInst2 then ⊢ dynType(σ1(ι1)) ≤ n2 and
P, Γ1, σ1 ⊢ ι′ : n2. In both cases, therefore, by DTSet and that ι′ ∈ R2 was chosen arbi-
trarily, P, Γ1, σ1 ⊢ R2 : set<n2>. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2, which are trivially
well-formed, and P, Γ2, σ2 ⊢ R2 : set<r> as required. Case complete.

Case 12: Derivation ends with OSRelInst
Then R1 = ι:r and R2 = {ι′′ | ∃ι′ : ρ1(r, ι, ι

′) = ι′′}. By DTRelInst,
P, Γ1, σ1 ⊢ R1 : set<r>. Take arbitrary ι′ ∈ R2. Then for some ι′, ρ1(r, ι, ι

′) = ι′′,
and by WFRelHeap, P, σ1, ρ1 ⊢ (r, ι, ι′) ⋄rel . By WFRelation1 and WFRelation2,
dynType(σ(ι′′)) = r so ⊢ dynType(σ(ι′′)) ≤ r by reflexivity. Therefore P, Γ1, σ1 ⊢ ι′′ : r for
arbitrary ι′′ ∈ e2, so P, Γ1, σ1 ⊢ R2 : set<r>. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2, which
are trivially well-formed, and P, Γ2, σ2 ⊢ R2 : set<r> as required. Case complete.

Case 13: Derivation ends with OSTo
Then R1 = u.to, R2 = ι where σ1(u) = 〈〈 , , , ι|| . . .〉〉, and P, Γ1, σ1 ⊢ R1 : n
where RP (r) = (, , n, ,) and P, Γ1, σ1 ⊢ u : r by DTTo. Therefore,
⊢ r′ = dynType(σ1(u)) ≤ r by DTAddr, and u ∈ dom(σ1).

If r′ = Relation, then r = Relation, n = Object and σ1(u) = 〈〈r, , , ι|| . . .〉〉. By
WFRelInst1, ι ∈ dom(σ1), so P, Γ1, σ1 ⊢ ι : Object = n as required.

46

If r′ 6= Relation, then σ(u) = 〈〈r′, , , ι|| . . .〉〉 and ⊢ dynType(σ1(ι)) ≤ n′ where RP (r′) =
(, , n′, ,) by WFRelInst2. ⊢ n′ ≤ n by WTRelationship, so ⊢ dynType(σ1(ι)) ≤ n
by transitivity, and P, Γ1, σ1 ⊢ ι : n by DTAddr.

In both cases, then, P, Γ1, σ1 ⊢ R2 : n. As Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2 and λ1 = λ2,
P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap , P, Γ2, σ2 ⊢ λ2 ⋄locals and P, Γ2, σ2 ⊢ R2 : n as required.

Similarly the case for OSFrom.

Case 14: Derivation ends with OSAss
Then R1 = x = u and P, Γ1, σ1 ⊢ R1 : t2 where P, Γ1, σ1 ⊢ x : t3, P, Γ1, σ1 ⊢ u : t2,
⊢ t2 ≤ t3 and x 6= this.

λ2 = λ1[x 7→ u]. Γ(x) = t3 by typing of x, so by Lemma 33, P, Γ1, σ1 ⊢ λ2 ⋄locals . Γ1 = Γ2

and σ1 = σ2, so P ⊢ σ2 ⋄heap and P, Γ2, σ2 ⊢ λ2 ⋄locals . As ρ1 = ρ2, ρ2 and σ2 are trivially
well-formed.

e2 = u, and P, Γ2, σ2 ⊢ R2 : t2 as required.

Case 15: Derivation ends with OSFldAss
Then R1 = u.f = u′ and R2 = u′. P, Γ1, σ1 ⊢ R1 : t1 where P, Γ1, σ1 ⊢ u : n1,
P, Γ1, σ1 ⊢ u′ : t1, FDP,n1

(f) = t2 and ⊢ t1 ≤ t2.

σ2 = fldUpd(σ1, ι1, f, u′), so P ⊢ σ2 ⋄heap by Lemma 28. Clearly the dynamic types
of all objects remain the same (as observed in Corollary 24), so by Lemma 29,
P, Γ1, σ2 ⊢ u′ : t1. As Γ1 = Γ2, P, Γ2, σ2 ⊢ R2 : t1 as required. Furthermore, λ1 = λ2,
so P, Γ2, σ1 ⊢ λ2 ⋄locals , but as P, Γ2, σ1 ⊢ λ2(x) : Γ2(x) ⇒ P, Γ2, σ2 ⊢ λ2(x) : Γ2(x) by
Lemma 29, P, Γ2, σ1 ⊢ λ2 ⋄locals .

Clearly field update does not affect the .to or .from pseudo-fields of relationship instances
(as from and to are excluded from FldName), so P, σ2 ⊢ ρ1 ⋄relheap , where ρ2 = ρ1 and is
therefore trivially well-formed. Case complete.

Case 16: Derivation ends with OSAdd
Then R1 = u + ι, R2 = (u ∪ ι), Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2, λ1 = λ2. Clearly
σ2, ρ2 and λ2 are all well-formed with respect to one another and to Γ2. By DTAdd,
P, Γ1, σ1 ⊢ u : set<n1>, P, Γ1, σ1 ⊢ ι : n2, P ⊢ n1 ≤ n3, P ⊢ n2 ≤ n3 and t1 = set<n3>.

By DTSet, ∀ι′ ∈ u : P, Γ1, σ1 ⊢ ι′ : n1. As P ⊢ n1 ≤ n3, by Lemma 38 ∀ι′ ∈ u :
P, Γ1, σ1 ⊢ ι′ : n3. Similarly, P, Γ1, σ1 ⊢ ι : n3. The union, therefore may be typed
P, Γ1, σ1 ⊢ (u ∪ ι) : set<n3> by DTSet. The required result (with t2 = set<n3> = t1)
then follows by (P, Γ1, σ1) = (P, Γ2, σ2).

Case 17: Derivation ends with OSSub
As above (the case is trivial where ι 6∈ u).

Case 18: Derivation ends with OSRelAdd
Then R1 = r.add(ι1,ι2), R2 = ρ2(r, ι1, ι2) and (σ2, ρ2) = addRelP (r, ι1, ι2, σ1, ρ1).
By DTRelAdd, P, Γ1, σ1 ⊢ e1 : r, where RP (r) = (, n1, n2, ,), P, Γ1, σ1 ⊢ ι1 : n3,
P, Γ1, σ1 ⊢ ι2 : n4, ⊢ n3 ≤ n1 and ⊢ n4 ≤ n2. By DTAddr, ⊢ dynType(σ1(ι1)) ≤ n3, and
by transitivity ⊢ dynType(σ1(ι1)) ≤ n1. Similarly for ι2 so that ⊢ dynType(σ1(ι2)) ≤ n2.
By Lemma 18, P ⊢ σ2 ⋄heap and P, σ2 ⊢ ρ2 ⋄relheap .

Also by Lemma 18, (r, ι1, ι2) ∈ dom(ρ2), so P, σ2, ρ2 ⊢ (r, ι1, ι2) ⋄rel . By WFRelation1
and WFRelation2, dynType(σ2(ρ2(r, ι1, ι2))) = r, so ⊢ dynType(σ2(ρ2(r, ι1, ι2))) ≤ r by
reflexivity and P, Γ2, σ2 ⊢ R2 = ρ2(r, ι1, ι2) : r as required.

47

Finally, Γ1 = Γ2 and λ1 = λ2, so P, Γ2, σ1 ⊢ λ2 ⋄locals . By Lemma 29,
P, Γ2, σ2 ⊢ λ2(x) : Γ2(x), so P, Γ2, σ2 ⊢ λ2 ⋄locals .

Case 19: Derivation ends with OSRelRem1
Then R1 = r.rem(ι1,ι2), R2 = ι2 and ρ2 = remRelP (r, ι1, ι2, ρ1). By DTRelSub,
P, Γ1, σ1 ⊢ r.rem(ι1,ι2) : n4, and P, Γ1, σ1 ⊢ ι2 : n4.

By Lemma 19, P, σ1 ⊢ ρ2 ⋄relheap . σ2 = σ1 so P, σ2 ⊢ ρ2 ⋄relheap and P ⊢ σ2 ⋄heap . Γ2 = Γ1

and λ2 = λ1 so P, Γ2, σ2 ⊢ λ2 ⋄locals .

Furthermore, by σ2 = σ1 and Γ2 = Γ1, P, Γ2, σ2 ⊢ ι2 : n4 as required.

Case 20: Derivation ends in RelRem2
Then proof is as above, except that P, Γ2, σ2 ⊢ e2 = null : r by DTNull, as required.

Case 21: Derivation ends with OSCall
Then R1 = ι.m(u). By OSCall:

1: dynType(σ1(ι)) = c
2: MDP,n1

(m) = (x,L, t2, t3, { s return e; })
3: dom(L) = {x1, x2, . . . , xi}
4: x′, x′

this
, x1..i 6∈ dom(λ1)

5: L′ = {x′

1..i 7→ L(x1..i)}
6: Γ2 = Γ1[x

′ 7→ t1][x
′

this
7→ c] ∪ L′

7: λ2 = λ1[x
′ 7→ u][x′

this
7→ ι][x′

1..i 7→ initial(L′(x′

1..i))]
8: s2 = s′[x′/x][x′

this
/this][x′

1..i/x1..i]
9: e′ = e[x′/x][x′

this
/this][x′

1..i/x1..i]

By DTCall, then, P, Γ1, σ1 ⊢ R1 : t3.

By WTMethod, P, {x 7→ t1, this 7→ c} ∪ L ⊢ s, so P, {x 7→ t1, this 7→ c} ∪ L, σ1 ⊢ s. As
x′, x′

this
, x1..i 6∈ dom(λ1), and hence 6∈ dom(Γ1) by well-formedness of λ1, then P, Γ2, σ1 ⊢ s′

by repeated application of Lemma 39.

By similar use of WTMethod and Lemma 39, P, Γ2, σ1 ⊢ e′ : t′3 is derived, where
⊢ t′3 ≤ t3.

Therefore, by DTMethBody, P, Γ2, σ1 ⊢ { s′ return e′; } : t′3. As σ2 = σ1,
P, Γ2, σ2 ⊢ { s′ return e′; } : t′3, where ⊢ t′3 ≤ t3 as required.

P ⊢ σ2 ⋄heap and P, σ2 ⊢ ρ2 ⋄relheap follow trivially as ρ1 and σ1 are unchanged. It remains
to check that P, Γ2, σ2 ⊢ λ2 ⋄locals .

As all of x′, x′

this
, x′

1..i 6∈ dom(λ1), and σ1 = σ2, all x ∈ dom(Γ1) are such that
P, Γ2, σ2 ⊢ λ2(x) : Γ2(x). For all new variables, x′

1..i, λ2(x
′

j) = initial(Γ2(x
′

j)), so
P, Γ2, λ2 ⊢ λ2(x

′

j) : Γ2(x
′

j) by Lemma 9. The new formal parameter variable x′ is such
that Γ2(x

′) = t2, but by DTCall, P, Γ1, σ1 ⊢ u : t′2 and ⊢ t′2 ≤ t2, where λ2(x
′) = u.

Therefore, P, Γ1, σ1 ⊢ λ2(x
′) : Γ2(x

′) and P, Γ2, σ2 ⊢ λ2(x
′) : Γ2(x

′) by σ1 = σ2 and the
irrelevance of Γ to value typing. Finally, dynType(σ2(ι)) = c and Γ2(x

′

this
) = c and

λ2(x
′

this
) = ι, so P, Γ2, σ2 ⊢ λ2(x

′

this
) : Γ2(x

′

this
) by DTAddr.

Therefore, for all x ∈ dom(Γ2), P, Γ2, σ2 ⊢ λ2(x) : Γ2(x), so conclude that
P, Γ2, σ2 ⊢ λ2 ⋄locals by WFLocals.

Finally, observe that Γ1 ⊆ Γ2.

Case 22: Derivation ends with OSStat

48

Then R1 = u; s1, R2 = s1. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2 and λ1 = λ2, so P ⊢ σ2 ⋄heap ,
P, σ2 ⊢ ρ2 ⋄relheap , P, Γ2, σ2 ⊢ λ2 ⋄locals immediately. By DTExp, P, Γ1, σ1 ⊢ s1, so
P, Γ2, σ2 ⊢ s1 follows immediately.

Case 23: Derivation ends with OSCondT
Then R1 = if (true) {s1} else {s2}; s3 and R2 = s1s3. By DTCond, P, Γ1, σ1 ⊢ s1

and P, Γ1, σ1 ⊢ s3. But Γ1 = Γ2, σ1 = σ2 so P, Γ2, σ2 ⊢ s1 and P, Γ2, σ2 ⊢ s3. By Lemma 40,
P, Γ2, σ2 ⊢ s1s3 as required. Additionally, as ρ1 = ρ2 and λ1 = λ2, P ⊢ σ2 ⋄heap ,
P, σ2 ⊢ ρ2 ⋄relheap and P, Γ2, σ2 ⊢ λ2 ⋄locals .

Similarly for derivations ending with OSCondF.

Case 24: Derivation ends with OSFor1
Then R1 = for (n x : ∅) {s1}; s2, R2 = s2 and P, Γ1, σ1 ⊢ s2. Γ1 = Γ2, σ1 = σ2, ρ1 = ρ2

and λ1 = λ2 so P, Γ2, σ2 ⊢ s2, P ⊢ σ2 ⋄heap , P, σ2 ⊢ ρ2 ⋄relheap and P, Γ2, σ2 ⊢ λ2 ⋄locals

immediately, as required.

Case 25: Derivation ends with OSFor2
Then R1 = for (n x : u) {s1}; s2 and R2 = s1[x

′/x] for (n x : u \ ι) {s1}; s2,
Γ2 = Γ1[x

′ 7→ n] and λ2 = λ1[x
′ 7→ ι] where ι ∈ u and x′ 6∈ dom(Γ1).

By DTFor, P, Γ1, σ1 ⊢ u : set<n′>, P ⊢ n′ ≤ n, P, Γ1, σ1 ⊢ s2 and P, Γ1[x 7→ n], σ1 ⊢ s1.

By DTSet, it is clear that P, Γ1, σ1 ⊢ (u \ ι) : set<n′>; by Lemma 34,
P, Γ2, σ1 ⊢ (u \ ι) : set<n′>; as σ1 = σ2, P, Γ2, σ2 ⊢ (u \ ι) : set<n′>.

By Lemma 34, that x 6= x′ and that σ1 = σ2, conclude P, Γ2[x 7→ n], σ2 ⊢ s1.

By Lemma 34, and that σ1 = σ2, conclude P, Γ2, σ2 ⊢ s2.

Therefore, P, Γ2, σ2 ⊢ for (n x : (u \ ι)) {s1}; s2.

By the consistent renaming of Lemma 39 and that σ1 = σ2, P, Γ2, σ2 ⊢ s1[x
′/x].

Finally, by Lemma 40, P, Γ2, σ2 ⊢ s1[x
′/x] for (n x : (u \ ι)) {s1}; s2 as required.

Clearly P ⊢ σ2 ⋄heap and P, σ2 ⊢ ρ2 ⋄relheap as σ1 = σ2 and ρ1 = ρ2.

For variables x ∈ dom(Γ1), P, Γ1, σ1 ⊢ λ1(x) : Γ1(x). As λ1(x) = λ2(x) and Γ1(x) =
Γ2(x) then P, Γ2, σ2 ⊢ λ2(x) : Γ2(x). P, Γ1, σ1 ⊢ u : set<n> by DTFor, so P, Γ1, σ1 ⊢ ι : n
and P, Γ2, σ2 ⊢ ι : n by Lemma 34. Therefore, recalling that λ2(x

′) = ι, conclude
P, Γ2, σ2 ⊢ λ2 ⋄locals as required, and Γ1 ⊆ Γ2.

�

Lemma 42 (Subterm Progress). Progress in sub-terms can be lifted to enclosing terms:

〈Γ, σ, ρ, λ, e〉 P

{

〈Γ′, σ′, ρ′, λ′, e′〉

〈Γ′, σ′, ρ′, λ′, w〉
⇒ 〈Γ, σ, ρ, λ, Ee[e]〉

P

{

〈Γ′, σ′, ρ′, λ′, Ee[e
′]〉

〈Γ′, σ′, ρ′, λ′, w′〉

Similarly for Es[e].

Proof If 〈Γ, σ, ρ, λ, e〉:
P

 〈Γ′, σ′, ρ′, λ′, e′〉 Then by OSContextE, 〈Γ, σ, ρ, λ, Ee[e]〉
P

 〈Γ′, σ′, ρ′, λ′, Ee[e
′]〉.

P

 〈Γ′, σ′, ρ′, λ′, e′〉 Then by OSContextE, 〈Γ′, σ′, ρ′, λ′, Ee[e]〉
P

 〈Γ′, σ′, ρ′, λ′, Ee[w]〉. By defini-
tion of Error, Ee[w] ∈ Error as required.

Proof for Es[e] proceeds as above, but by OSContextS. �

49

Theorem 43 (Progress).
If

– P ⊢ σ ⋄heap

– P, σ ⊢ ρ ⋄relheap

– P, Γ, σ ⊢ λ ⋄locals

– P, Γ, σ ⊢ R : t or P, Γ, σ ⊢ R

then:

(a) R ∈ DynValue, R = ǫ, or

(b) 〈Γ, σ, ρ, λ, R〉 P

 〈Γ′, σ′, ρ′, λ′, R′〉, or

(c) 〈Γ, σ, ρ, λ, R〉 P

 〈Γ′, σ′, ρ′, λ′, w〉

Proof By induction over the structure of the derivation of P, Γ1, σ1 ⊢ e1 : t1.

Case 1: Derivation ends in DTAddr, DTSet, DTNull, DTBoolF or DTBoolT
Then e is a value.

Case 2: Derivation ends in DTMethBody
Then R = { s return e1; }.

If s = ǫ and e1 = u ∈ DynValue then progress is made by OSBody to u ∈ DynValue ⊂
DynExpression as required.

If s = ǫ and e1 6∈ DynValue then take Ee = { return • ; } such that e1 = Ee[e1]. By
DTMethBody, P, Γ, σ ⊢ e1 : t, and the result follows by the inductive hypothesis applied
to e1 and Lemma 42.

If s 6= ǫ then P, Γ, σ ⊢ s. By induction 〈Γ, σ, ρ, λ, s〉:

P

 〈Γ′, σ′, ρ′, λ′, s′〉 In which case, by OSInBody,

〈Γ, σ, ρ, λ, { s return e1; }〉 P

 〈Γ′, σ′, ρ′, λ′, { s return e1; }〉

as required.
P

 〈Γ′, σ′, ρ′, λ′, w′〉 In which case, by OSInBody,

〈Γ, σ, ρ, λ, { s return e1; }〉 P

 〈Γ′, σ′, ρ′, λ′, w〉

where w = { w′ return e; } as required.

Case 3: Derivation ends in DTVar
Then Γ(x) = t. By GoodLocals, P, Γ, σ ⊢ λ(x) : t, so x ∈ dom(λ). Progress by OSVar
to λ(x) ∈ DynValue ⊂ DynExpression as required.

Case 4: Derivation ends in DTNew
Then progress is by OSNew to ι ∈ DynValue ⊂ DynExpression as required.

Case 5: Derivation ends in DTEq
Then R = (e1 == e2).

If e1, e2 ∈ DynValue and e1 = e2, then progress is made by OSEq to true ∈ DynExpression

as required.

If e1, e2 ∈ DynValue and e1 6= e2, then progress is made by OSNeq to false ∈
DynExpression as required.

50

If e1 6∈ DynValue then take Ee = (• == e2) such that R = Ee[e1]. P, Γ, σ ⊢ e1 : t1 by DTEq,
so required result follows by inductive hypothesis on e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue, then take Ee = (e1 == •) such that R = Ee[e2].
P, Γ, σ ⊢ e2 : t2 by DTEq, so required result follows by inductive hypothesis on e2 and
Lemma 42.

Case 6: Derivation ends in DTFld
Then R = e1.f .

If e1 ∈ DynValue then e1 = null (by DTNull) or e1 = ι ∈ dom(σ) where
P ⊢ dynType(σ1(ι)) ≤ n (by DTAddr). If e1 = null then progress is by OSFldN,
and w = NullPtrError ∈ Error as required. If e1 = ι ∈ dom(σ) then, by Lemma 25,
e′ = fld(σ, ι, f) ∈ DynValue ⊂ Expression as required.

Suppose e1 6∈ DynValue, and take Ee = •.f such that R = Ee[e1]. Required result follows
by inductive hypothesis on e and Lemma 42.

Case 7: Derivation ends in DTAdd
Then R = e1 + e2. By DTAdd, P, Γ, σ ⊢ e1 : set<n1> and P, Γ, σ ⊢ e2 : n2.

If e1, e2 ∈ DynValue, then by typing e1 ⊂ Address, e2 ∈ Address ∪ {null}. Progress
is then made by OSAdd to e1 ∪ {e2} ∈ DynValue ⊂ DynExpression or by OSAddN to
NullPtrError ∈ Error as required.

If e1 6∈ DynValue then take Ee = • + e2 such that R = Ee[e1]. Required result then follows
by application of inductive hypothesis to e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue then Ee = e1 + • such that R = Ee[e2]. Required
result then follows by application of inductive hypothesis to e2 and Lemma 42.

Case 8: Derivation ends in DTSub
Similar to case for DTAdd.

Case 9: Derivation ends in DTRelObj
Then R = e1.r and P, Γ, σ ⊢ e1 : n1.

If e1 = u ∈ DynValue then by typing, e1 ∈ Address or e1 = null. If e1 ∈ Address, then
progress is made by OSRelObj to {ι′ | ∃ι′′ : ρ(r, e1, ι

′) = ι′′} ⊆ Address ⊂ DynValue ⊂
DynExpression as required. If e1 = null then progress is made by OSRelObjN to NullP-

trError.

If e1 6∈ DynValue then take Ee = •.r such that R = Ee[e1]. Result follows then by the
inductive hypothesis on e1 and Lemma 42.

Case 10: Derivation ends in DTRelInst
Then R = e1:r and P, Γ, σ ⊢ e1 : n1.

If e1 = u ∈ DynValue then by typing, e1 ∈ Address or e1 = null. If e1 ∈ Address, then
progress is made by OSRelInst to {ι′′ | ∃ι′ : ρ(r, e1, ι

′) = ι′′} ⊆ Address ⊂ DynValue ⊂
DynExpression as required. If e1 = null then progress is made by OSRelInstN to NullP-

trError.

If e1 6∈ DynValue then take Ee = •:r such that R = Ee[e1]. Result follows then by the
inductive hypothesis on e1 and Lemma 42.

Case 11: Derivation ends in DTFrom
Then R = e1.from and P, Γ, σ ⊢ e1 : r.

51

If e1 = u ∈ DynValue then by typing e1 ∈ Address or e1 = null. If e1 ∈
Address, then P ⊢ dynType(σ(e1)) ≤ r by DTAddr. By WFRelInst1/2, σ(ι) =
〈〈dynType(σ(e1)), , ι′, || . . .〉〉. Progress is made by OSFrom to ι′ ∈ Address ⊂ DynValue ⊂
DynExpression as required. Where e1 = null the progress is made by OSFromN to
NullPtrError.

If e1 6∈ DynValue then take Ee = •.from such that R = Ee[e1]. Required result follows from
induction on e1 and Lemma 42.

Case 12: Derivation ends in DTTo
Similar to the case for DTFrom.

Case 13: Derivation ends in DTAss
Then R = (x = e1) and P, Γ, σ ⊢ e1 : t1.

If e1 ∈ DynValue then progress is made by OSVarAss to u ∈ DynValue ⊂ DynExpression

(under updated λ).

If e1 6∈ DynValue then take Ee = x = • such that R = Ee[e1]. Required result follows by
induction on e1 and Lemma 42.

Case 14: Derivation ends in DTFldAss
Then R = e1.f = e2, P, Γ, σ ⊢ e1 : n1 and P, Γ, σ ⊢ e2 : t2.

If e1, e2 ∈ DynValue then by typing e1 ∈ Address or e1 = null. If e1 ∈ Address then progress
is made by OSFldAss to u ∈ DynValue ⊂ DynExpression under new store fldUpd(σ, ι, f, u),
which is defined by Lemma 26. If e1 = null then progress is made by OSFldAssN to
NullPtrError.

If e1 6∈ DynValue then take Ee = •.f = e2 such that R = Ee[e1] and the result follows by
induction on e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue, then take Ee = e1.f = • such that e = Ee[e2] and
the result follows by induction on e1 and Lemma 42.

Case 15: Derivation ends in DTRelAdd
Then R = r.add(e1,e2), P, Γ, σ ⊢ e1 : n1 and P, Γ, σ ⊢ e2 : n2.

If e1, e2 ∈ DynValue then e1, e2 ∈ Address ∪ {null}. If either e1 = null or e2 = null

then progress is made to NullPtrError by OSRelAddN. In the case where e1 and e2

are addresses, then progress is made by OSRelAdd to ρ′(r, e1, e2) where (σ′, ρ′) =
addRelP (r, e1, e2, σ, ρ) and where (r, e1, e2) ∈ dom(ρ) by Lemma 18. Therefore ρ′(r, e1, e2) ∈
Address ⊂ DynValue ⊂ DynExpression as required.

If e1 6∈ DynValue then take Ee = r.add(• ,e2) such that R = Ee[e1] and the result follows
by induction on e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue then take Ee = r.add(e1, •) such that e = Ee[e2] and
the result follows by induction on e2 and Lemma 42.

Case 16: Derivation ends in DTRelRem
Then R = r.rem(e1,e2), P, Γ, σ ⊢ e1 : n1 and P, Γ, σ ⊢ e2 : n2.

If e1, e2 ∈ DynValue then e1, e2 ∈ Address ∪ {null}. If either e1 = null or e2 = null then
progress is made to NullPtrError by OSRelRemN. Assume, then, that e1, e2 ∈ Address.
If (r, e1, e2) ∈ dom(ρ) then progress is made by OSRelRem1 to ρ(r, e1, e2) ∈ Address ⊂
DynValue ⊂ DynExpression as required. If (r, e1, e2) 6∈ dom(ρ) then progress is made by
OSRelRem2 to null ∈ DynValue ⊂ DynExpression as required.

52

If e1 6∈ DynValue then take Ee = r.rem(• ,e2) such that R = Ee[e1] and the result follows
by induction on e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue then take Ee = r.rem(e1, •) such that R = Ee[e2]
and the result follows by induction on e2 and Lemma 42.

Case 17: Derivation ends in DTCall
Then R = e1.m(e2), P, Γ, σ ⊢ e1 : n1, P, Γ, σ ⊢ e2 : t2 and MDP,n1

(m) =
(, , , , s1 return e3;).

If e1, e2 ∈ DynValue then e1 ∈ Address or e1 = null. If e1 ∈ Address then progress is made
by OSCall to { s1 return e3; } ∈ DynExpression as required, under new Γ and λ. If
e1 = null then progress is made by OSCallN to NullPtrError.

If e1 6∈ DynValue then take Ee = •.m(e2) such that R = Ee[e1] and the result follows by
induction on e1 and Lemma 42.

If e1 ∈ DynValue and e2 6∈ DynValue then take Ee = e1.m(•) such that R = Ee[e2] and
the result follows by induction on e2 and Lemma 42.

Case 18: Derivation ends in DTSkip
Then R = ǫ.

Case 19: Derivation ends in DTExp
Then R = e1; s1. By DTExp, P, Γ, σ ⊢ e1 : t.

If e1 = u ∈ DynValue then progress is made by OSStat to s1 ∈ DynStatement as required.

If e1 6∈ DynValue then take Es = • s1 such that R = Es[e1]. The result follows by induction
on e1 and Lemma 42.

Case 20: Derivation ends in DTCond
Then R = if (e1) {s1} else {s2}; s3.

If e1 = u ∈ DynValue, then by DTCond, P, Γ, σ ⊢ u : boolean so u = true or u = false.
If u = true then s1 makes progress to s1 s3. If u = false then s1 makes progress to s2 s3.

If e1 6∈ DynValue, then take Es = if (•) {s1} else {s2}; s3 such that R = Es[e1]. R
then makes progress by application of the inductive hypothesis to e1, and Lemma 42.

Case 21: Derivation ends in DTFor
Then R = for (n x : e1) {s2}; s3.

If e1 = u ∈ DynValue and u = ∅ then R makes progress by OSFor1 to s3.

If e1 = u ∈ DynValue and u 6= ∅, then by DTFor, P, Γ, σ ⊢ e1 : set<n2>, so u ⊆ Address.
We can therefore pick one ι ∈ u such that R makes progress to s4 for (n x : u\ι) {s2}; s3

by OSFor2, where s4 is s2 with some consistent renaming of the iteration variable x (also
applied to Γ, which is elided here).

If e1 6∈ DynValue, then take Es = for (n x : •) {s2}; s3 such that R = Es[e1], which
makes progress by the inductive hypothesis and Lemma 42.

�

Conclusion: All RelJ programs that are not in a terminal or exceptional state may execute to
a new state by Theorem 43, which will be well-typed and well-formed by Theorem 41. Therefore,
RelJ is type sound.

53

