COMPUTER SCIENCE TRIPOS Part IB — 2022 — Paper 4

2

Compiler Construction (tgg22)

This
tion.

(a)

question involves the derivation of “stack machines” using the CPS transforma-

Consider the following OCaml code of type
add_right : int list -> int
that returns the sum of the integers in its argument list.
let rec add_right 1 =
match 1 with
| 1 ->0
| h::tl -> h + (add_right tl);;

Explain why this code, as presented, is not tail recursive. [2 marks]

Use the CPS transformation to rewrite add_right to a function that could be
given the type

add_right_cps : int list -> (int -> int) -> int
[6 marks|

Apply defunctionalisation to your code for add_right_cps. That is, define a
(non-functional) data type cnt and a transformed function add_right_dfc of

type
add_right_dfc : int list -> cnt -> int
[6 marks]

The function add_right from Part (a) could be generalised to the following
function.

let rec fold_right £ 1 accu =
match 1 with
| [-> accu
| a::1 -> f a (fold_right f 1 accu);;
For simplicity, we will treat this code as if it had the type

fold_right : (int -> int -> int) -> int list -> int -> int

and not worry about polymorphism. Rewrite this program using the CPS
transformation. Justify your treatment of the variable £. What problems might
you encounter in attempting to defunctionalise your CPS version? [6 marks]

