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Designing A Universal Name Service

Chaoying Ma

Summary

Generally speaking, naming in computing systems deals with the creation of object iden-
tifiers at all levels of a system architecture and the mapping among them. Two of the
main purposes of having names in computer systems are (a) to identify objects; (b) to
accomplish sharing. Without naming, no computer system design can be done.

The rapid development in the technology of personal workstations and computer com-
munication networks has placed a great number of demands on designing large computer
naming systems. In this dissertation, issues of naming in large distributed computing
systems are addressed. Technical aspects as well as system architecture are examined. A
design of a Universal Name Service (UNS) is proposed and its prototype implementation
is described. Three major issues on designing a global naming system are studied. Firstly,
it is observed that none of the existing global name services provides enough flexibility in
restructuring name spaces, more research has to be done. Secondly, it is observed that
although using stale naming data (hints) at the application level is acceptable in most
cases as long as it is detectable and recoverable, stronger naming data integrity should be
maintained to provide a better guarantee of finding objects, especially when a high degree
of availability is required. Finally, configuring the name service is usually done in an ad
hoc manner, leading to unexpected interruptions or a great deal of human intervention
when the system is reconfigured. It is necessary to make a systematic study of automatic
configuration and reconfiguration of name services.

This research is based on a distributed computing model, in which a number of computers
work cooperatively to provide the service. The contributions include: (a) The construc-
tion of a Global Unique Directory Identifier (GUDI) name space. Flexible name space
restructuring is supported by allowing directories to be added to or removed from the
GUDI name space. (b) The definition of a two-class name service infrastructure which
exploits the semantics of naming. It makes the UNS replication control more robust, reli-
able as well as highly available. (c) The identification of two aspects in the name service
configuration: one is concerned with the replication configuration, and the other is con-
cerned with the server configuration. It is notable that previous work only studied these
two aspects individually but not in combination. A distinguishing feature of the UNS is
that both issues are considered at the design stage and novel methods are used to allow
dynamic service configuration to be done automatically and safely.
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Abstract

Generally speaking, naming in computing systems deals with the creation of object iden-
tifiers at all levels of a system architecture and the mapping among them. Two of the
main purposes of having names in computer systems are (a) to identify objects; (b) to

accomplish sharing. Without naming, no computer system design can be done.

The rapid development in the technology of personal workstations and computer com-
munication networks has placed a great number of demands on large computer naming
systems. Despite the existence of several such naming systems in a distributed system
environment, there still are many unanswered questions. In this dissertation, the issues
of naming in large distributed computing systems are addressed. Technical aspects as
well as system architecture are examined. A design of a Universal Name Service (UNS) is
proposed and its prototype implementation is described. Three major issues on designing
a global naming system are studied. Firstly, it is observed that none of the existing global
name services provides enough flexibility of restructuring name spaces, more research has
to be done. Secondly, although using stale naming data (hints) at the application level is
acceptable in most cases as long as it is detectable and recoverable, stronger naming data
integrity should be maintained to provide a better guarantee of finding objects, especially
when a high degree of availability is required. Finally, configuring the name service is
usually done in an ad hoc manner, leading to unexpected interruptions or a great deal of
human intervention when the system is reconfigured. It is necessary to make a systematic

study of automatic configuration and reconfiguration of name services.

This research is based on a distributed computing model, in which a number of computers
work cooperatively to provide the service. The contributions include: (a) The construction
of a Global Unique Directory Identifier (GUDI) name space. Flexible name space restruc-
turing is supported by allowing directories to be added to or removed from the GUDI
name space. (b) The definition of a two-class name service infrastructure which exploits
the semantics of naming. It makes the UNS replication control more robust, reliable as
well as highly available. (c) The identification of two aspects in the name service config-
uration: one is concerned with the replication configuration, and the other is concerned
with the server configuration. It is notable that previous work only studied these two
aspects individually but not in combination. A distinguishing feature of the UNS is that
both issues are considered at the design time and novel methods are employed to allow

dynamic service configuration to be done automatically and safely.
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Chapter 1

Introduction

1.1 Overview

For many years people have relied on names to identify each other and most things. Simi-
larly, computers use identifiers (names) to refer to objects and each other in a distributed
computing environment. Naming in computer systems is concerned with accesses of var-
ious objects given their identifiers. Names can exist in many different ways and are used
by many different computer-based services or applications. Although the fundamentals
of computer naming have been defined and well understood, and many techniques have
been developed to construct computer naming systems, there are a number of issues which
warrant further studies in the design of a large, distributed naming system. In this dis-
sertation, naming in large distributed computing systems is addressed. Technical aspects
as well as the system architecture are examined. The design of a Universal Name Service

(UNS) is proposed, and its prototype implementation is described.

It is generally understood that naming in computing systems deals with creating identifiers
at all levels of a system architecture and mapping among them. Names are given to
processes, program variables, database entries, files, machines, mailboxes, gateways, and
networks in a computer system. Two of the main purposes of having names in computer
systems are to identify objects and to accomplish sharing. Other purposes include security-
related purposes, locating, scheduling and supporting cooperation and communication.

Because of the importance of naming, it has been said [Watson 81] that:

Identification systems (often called naming systems) are at the heart of all

computer system design.
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Naming in centralised computing systems, particularly operating systems, had been stud-
ied extensively long before the recent and rapid development in computer networking and
personal workstation technologies. An excellent paper entitled “Naming and Binding of
Objects” by Saltzer [Saltzer 79] sets the cornerstone of research into computer naming in
the late 1970s. In Chapter 2, general naming concepts will be introduced. Many of the
concepts are taken from Saltzer’s paper because they are also applicable to distributed
naming. This dissertation focusses on distributed naming only. Some notable contribu-

tions in this area include [Comer 87, Lampson 86, Saltzer 82, Birrell 82, Shoch 78].

With regard to the large scale distributed systems, which are made possible by the growing
capability of communication networks (for instance, the ISDN [Pandhi 87]), one potential
requirement of naming is to enable any end user on an interconnected network to com-
municate with millions of others. Sharing of resources via computer networks should also
be enhanced. Naming systems have expanded rapidly not only in terms of function but
also capacity. People want to have a common way of handling world wide communication
[Watson 81, Lampson 86, Quarterman86, Estrin 86, Araujo 88]. In respond to this, there
are already some global naming systems operating; for example, the Domain Name System
(DNS) [Mockapetri88], the DECdns [Martin 89], Quipu - an X.500 pilot system [Kille 89
and Xerox Clearinghouse [Oppen 83].

However, despite the existence of several naming services in the field of distributed systems,
there are still many unresolved questions remaining. This dissertation tackles three issues
in designing a global naming system. Firstly, it is observed that none of the existing global
name services provides enough flexibility in restructuring name spaces, more research has
to be done. Secondly, although using stale naming data (hints) at the application level is
acceptable in most cases, as long as it is detectable and recoverable, stronger naming data
integrity should be maintained to provide a better guarantee of finding objects, especially
when a high degree of availability is required. Finally, configuring a name service is usually
done in an ad hoc manner, leading to unexpected interruptions or a great deal of human
intervention when the system is reconfigured. It is necessary to make a systematic study

of automatic configuration and reconfiguration of the name service.

1.2 Overview of Solutions

In design of a very large and highly complex distributed naming system, it is vital to
give the system the ability of growth in order to meet organisational requirements. For

example, several existing name spaces might have to be merged to allow their clients to
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share each others’ names. Rapid growth of the DNS user community has placed great
strain on the system. The DNS copes with the scaling problem by allowing its naming
hierarchy to extend downwards from the existing nodes. However the growth of existing
systems upwards is not supported by the DNS, nor is the migration of a branch of the
tree from one node to another. Similar problems exist in many other name systems. The
challenge that name service designers face is how to avoid imposing unnecessary limits on
a system. One elegant solution to the scaling problem is to use global unique identifiers.
In “Designing a Global Name Service” [Lampson 86], global unique identifiers are used
for restructuring name spaces. An example of such restructuring is to merge existing
name spaces by adding a new root. In many previous designs of naming system, adding
a new root to a name space requires a high degree of renaming. However, using unique
identifiers, the new names in the merged name space and the old names in the original
name spaces are both valid names of the system. The GNS proposes to solve this problem
by making only the current roots recognisable by the system, and discarding older roots,
i.e. those that existed before the last merge operation took place. In the UNS, a global
UDI name space is defined and implemented. Flexibility in restructuring name spaces is
then provided by allowing the addition of directories (not necessarily a root directory)
to or the removal of directories from the global UDI name space. Hierarchical name
resolution is also supported by the UNS since simply using unique identifiers does not
satisfy other requirements such as autonomy. Hierarchical naming is particularly useful

to avoid ambiguity.

Maintenance of a universal name service still remains an unresolved issue with respect
to availability and reliability, although many replication control algorithms have been
extensively developed for distributed systems [Stefano 87, Bernstein 87]. In fact, most of
these algorithms are designed for distributed database management or file systems. For
instance, weighted voting is employed by distributed file systems [Gifford 79, Bloch 82];
this method is not very suitable for maintenance of a large naming system since it relies
on an underlying atomic action mechanism which is expensive, and unlikely to scale well.
Instead, loose-coupled replication control mechanisms are widely used by existing naming
systems [Birrell 82, Mockapetri88, Lampson 86, Demers 87], but few can really meet the

increasing demands made on naming systems by various applications.

A notable feature of the UNS name service is its large scale. Tens of thousands of organ-
isations are likely to be involved in such a system. It is obvious that replication must be
employed to improve performance and availability. In order to maintain replicated naming
data, the semantics of the UNS is exploited, and a two-class name service infrastructure

is proposed. In the UNS, replicated data may be one of three types. Some are defined
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as replicas which are managed by a small number of servers called the first class servers.
Some are defined as read-only copies maintained by secondary servers (which could be the
first class servers for some other partitions of the naming data). Other replicated data
are called client caches. This distinction makes the following scheme possible: replicas are
responsible for the integrity of the UNS, read-only copies are responsible for offering clients
consistent but possibly old data with higher availability, and caching is used to improve
performance. The second class servers can also be used to reduce lookup overhead and im-
prove service efficiency. A call-back mechanism is used by the first class servers to inform
the second class servers about recent successful updates; this further reduces the number
of queries to the first class servers. When the first class servers are not functioning, the
second class servers can still answer enquiries. However no update can be made in this
case, thus, no inconsistency can occur. Two types of queries to the first class service may

be specified: one for “fast read” and the other for “slow read”.

Finally, the problem of configuring the name service is addressed. Previous naming sys-
tems usually treat configuration in an ad hoc manner. The name service configuration
involves two aspects: (a) The storage and maintenance of the replication configuration.
For instance, the addition of a replica to or the removal of a replica from the existing
replica set. (b) The storage and maintenance of the server configuration. For example,
the movement or alternation of the responsibilities of servers. It is notable that previous
work only studied these two aspects individually but not in combination. A distinguishing
feature of the UNS is that both issues have been considered at the design stage and novel

methods are used to allow dynamic service configuration to be done safely.

1.3 Plan of the Dissertation

The remainder of this dissertation is organised as follows. Chapter 2 describes the fun-
damentals of computer naming, including basic concepts, types of naming systems and
principles. Chapter 3 considers the general aspects in the design of a universal name ser-
vice. Chapter 4 presents a technique for dynamic construction of the UNS name spaces.
Chapter 5 discusses maintenance of the naming database. Consistency mechanisms capa-
ble of supporting the UNS requirements are also investigated. Chapter 6 examines the
conditions for correctness of dynamic name service reconfiguration and discusses how this
can be archived. Chapter 7 presents the implementation of the UNS prototype, and finally

Chapter 8 concludes the work and gives suggestions for further research.



Chapter 2

Computer Naming In General

2.1 Introduction to Naming

The general aspects of computer naming are reviewed in this chapter. It starts with some
examples of naming, then followed by the conceptual definition of computer naming in
Section 2.2. The particulars of distributed naming are explained in Section 2.3. Section 2.4

presents a brief survey of some computer name systems.

The first example of naming is from daily life. Suppose that there are two people Joe
and Weili living in Britain and China respectively. Joe wants to send a letter to Weili; he

writes the following on the envelope:

Miss Lin, Weili
P.O. Box 12345
Beijing, 100083
The People’s Republic of China (PRC)

The mailing address contains a number of names: “Lin, Weili” for a person, “P.0. Box
12345” for an organisation, “Beijing” for a city, and “The People’s Republic of China”
for a country. After Joe posts the letter, one of the post offices in Britain will receive
it and try to deliver it in some way. In fact, the mail may travel via several post offices
before leaving the country. Later, it may be carried by a plane to China and classified,
say at a central post office in Beijing, then sent to a regional post office where a postman
will deliver the letter to Weili’s pigeon-hole. No matter how complex the means to deliver
the letter is, the mailing address plays an important role. Given the country name, the

letter will go to China rather than to the US. A number of steps are involved to deliver

5
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At a Post Office PRC "
foreign FRANCE
R —r
. #2
[ J . 0
\
#n

Figure 2.1: A Naming Example from Daily Life

the letter. Any post office concerned must have some information about the next possible
step to take, and be able to contact the next post office in the chain. Figure 2.1 illustrates

one possible step taken in a post office.

The second example, see Figure 2.2, is taken from the field of computing. A C program
has an integer variable sum, and a symbol table generated by the compiler, which maps
variable names to their memory addresses, e.g. from sum to 04B, where the integer 15 is

stored.

From these two examples, the following points are noted. Naming involves at least two
entities, one holding a name by which the other is referred to. There are different kinds
of names, some are meaningful to people, and others are not. Naming can be used for
different purposes. Given an (source) entity that refers to another (target) entity by name,
there is a mechanism which connects it with some information from which the target entity
can be further identified. All these will be modelled in terms of computer naming in the

next section.

2.2 General Concepts

A brief review of naming concepts in both centralised and distributed systems is presented

in this section.

2.2.1 A Model for the Use of Names

A computer system typically involves a number of resources, such as files, processes, I/0

units, memory segments, and so on. From an object-oriented point of view: a computer
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a C program symbol table memory
of the program
main() sum | 04B
t ) }- 15
int sum;

sum=sum+1;

}

\

Figure 2.2: A Computer Naming Example

system can be seen as a manager of a variety of objects [Saltzer 79] (e.g. resources). To
set up a link, i.e. a reference, between any two objects, a symbolic entity is used which
identifies the link. ! The symbolic entity is called the name or identifier for an object.
For example, “Weili”, “sum” and “04B” are names for a person, a variable and a memory
cell respectively. It is possible for an object to have many names, or for the same name
to be used by different objects for different purposes. In abstract terms, Saltzer defines a

context of naming:

A context is a partial mapping from some names into some objects of the
system. Arranging that a context shall map a name into an object is called

binding that name to that object in that contexzt.

Figure 2.2 illustrates the source object (the program), the context (the symbol table),
the binding of sum to 04B and the target object 15. There may be a finite number of
lower level names and contexts 2 implementing the link between the source object and the
target one. The target object must appear in one and only one context. The mechanism
which connects the source object with its context is called a closure. For example, in
Figure 2.2, the program interpreter implements the closure function by automatically using

the symbol table as a context.

1A name is defined as a linguistic entity in [Linden 90] which singles out a particular entity from
many. A name is also defined as a syntactic entity in [Comer 89]; name resolution is modelled as a string
translation problem. To be generic, the word symbolic is used in this research.

2A name to target object binding usually involves a number of name mappings at several system levels.
A lower level name or context is the one that a system gets after one or more name mappings. For example,
given a variable name, a lower level name (an address of the memory) can be obtained by looking up the

variable name in a program’s symbolic table. See also Name resolution.
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/ust/groups/cm spell —
5 tist G| -~/bin/spell
bin - . . X
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Figure 2.3: A Sample Naming Network

2.2.2 Basic Concepts

Naming Domain A naming domain contains all objects that can be named. For exam-

ple: windows, files, file directories and memory segments of a computer system.

Naming Convention A naming convention defines the valid names to be accepted by a
naming system and their interpretation, e.g. the UNIX file system defines a multi-
component names which are composed of simple names such as “usr” and “bin”, and
separated by “/”. For example, “/usr/bin/foo/bar” is a valid file name. Another
naming convention found from the UNIX system is the generation and use of process

identifiers (PIDs). A PID is an integer assigned to a process at its creation.

Name Space A name space contains all names acceptable by one and only one naming

convention, e.g. all UNIX files form the UNIX file name space.

Name Network A name network can be defined as a directed graph [Comer 87], of which
each vertex denotes a naming context and each edge denotes a reference to another
context. A sample naming network is shown in Figure 2.3, where objects (files) are
identified by multi-component names such as /usr/group5/cm/src/a.c. The context
/usr/group5/cm contains other contexts, e.g. “bin” and “src”. A file name can be

resolved (see definition next) with the support of the naming network .

Name Resolution Name resolution defines a function which maps an input name to
another name. There may be multiple steps of mapping before the lowest level

name referring to the target object is returned. The lowest level name is used to
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Figure 2.4: A Step in the General Name Resolution Model

locate the target object. A general name resolution model is defined in [Linden 90].
Figure 2.4 shows a single step that a name resolution involves. To resolve a name,
a naming context derived from the entity and a naming convention are required to
start with. The naming convention is used to derive a Handle and a Name (also
called a remainder) from the given Name. By looking up the Handle from the naming
context, a new entity is got. If the new entity is a naming context, the procedure
continues, i.e. the remainder is used to extract a new handle and a new name, which
is looked up in the new naming context, and so forth. Otherwise either the name
being resolved is unbound, in that case an error is reported, or the name is resolved

so that the procedure finishes.

2.3 Distributed Naming

The model and concepts defined in the last section apply to not only centralised computer
systems but also distributed ones. Besides the basic concepts, some new ones must be

introduced to solve naming problems encountered in distributed computing systems.

A distributed computing system is composed of a number of independent hardware and
software components supported by one or more underlying computer networks. There is
little doubt that more naming and binding exist in such a system than in a centralised
one. Another interesting point is that these components are interdependent as well as
autonomous. In describing interdependency, Lamport once defined a distributed system as
a system in which the failure of a computer one has never heard of can make it impossible to
get work done. On the other hand, these components are also autonomous: both in naming
and management. Naming can be done independently within a name issuing authority,

and naming information is maintained by each local authority rather than a central one.
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Naming autonomy can be achieved by using hierarchical names. For instance, a naming
domain can be partitioned either geographically or organisationally; the partitions are put
into a tree structure. At each vertex on the tree, assignment of names can be done with no
regard to that at other vertices. Hierarchy also makes unambiguous naming easy to do too.
For example, the UNIX file system has hierarchical file names like “/sys/bin/man” and

“/usr/group5/cm/bin/man”, to refer to the two different print-out-the-manual programs.

New objects introduced by distributed systems include Host (Node), Socket, Gateway,
Network, Service, Client etc. The introduction of new objects has enriched the types that
a naming system has to support. On the other hand, the scale of the naming system
increases as the distributed computing system extends. One of the main requirements of
a distributed naming system is the ability to evolve the system for larger capacity and
better functionality, i.e. the naming system can be extended as the distributed system

gIows.

In conclusion, a distributed naming system manages more objects than a centralised sys-

tem. It is autonomous yet interdependent.

2.3.1 Federated Naming

Although there are different naming conventions in a centralised computer system, these
conventions are used for different naming purposes and at different levels. There are few
chances for them to be brought together to form a larger name space. However, in a
distributed computing environment, communication and the sharing of resources become
possible, which are also supported by the system. To enable the interconnections of
various heterogeneous computer systems at all levels, it is valuable to make the naming
systems work cooperatively. One approach to this is to set up federated naming systems
[Schwartz 87, Peterson 88, Linden 90]. A Federated Naming System has the following

features: 3

¢ Disjoint naming domains before and after the federation.

¢ Naming contexts may be exported or imported. To export a naming context means to
allow the context reachable from other naming systems. To import a naming context
means to allow the context of another naming system to be reached by the current
system. The imported or exported context does not have to be a separated context.
Marking the exported or imported entities is required in order to distinguish them

from the local entities.

31t is based on the notions in [Linden 90].
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o The function, which makes a foreign context be reached by the naming network of

the current system, does not affect the system’s own naming convention.

e The federated naming space is flat.

In spite of the technical generality, the federated naming model lacks the support to the
higher degree of global coherence and the performance provided by a centralised system.
There are also problems in access transparency. For instance, the boundaries among the
different naming domains are visible in a naming federation. The closure mechanism
also becomes difficult to implement, especially for naming in heterogeneous computing
systems.? As computer science and technology develop rapidly, global naming is in great
demand. For instance, it is required that a new generation of file system have the ability of
global naming [Birrell 91]. It is also required that the directory services or the electronic
mail systems [X.500 88, X.400 84, Mockapetri88] be accessed globally in a coherent way.
Furthermore, a federated naming system can not avoid scaling problem although efforts
have been made to limit the size of a federation. However some of such systems may grow,
and eventually become a global name service used by the whole world community (for
example, the world telephone systems). The federated naming model may cope with a
distributed system with a moderate size, stronger autonomy, and restrict sharing, but not

with very large distributed systems.

2.3.2 Global Naming

A Global Naming System distinguishes itself from a federated one. It is defined as:

¢ A logically centralised but physically distributed naming system
e with globally unique and accessible names and

e a uniform interface for the client.

Any participant of the system must adhere to the agreements for accessing the sys-
tem such as the name service access protocols and the naming convention. A cen-
tralised naming system differs from a distributed naming system in the way it is con-
structed. For instance, it will completely break down when the underlying computer
system fails. A common model to implement a distributed system is the Client/Server

model [Birrell 82, Needham 82, Coulouris 88]. A Name Server provides operations for

*Problems of this kind are addressed in [Schwartz 87].
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manipulating names. In particular, it maps names for objects to a set of attributes (prop-
erties), such as mailboxes, network addresses, and machine names. An Attribute is also
named and assigned with a number of values. For example, the value of a network address
is 128.232.0.10. A Name Service is composed of one or more Name Servers which

cooperate to resolve names.

2.4 A Brief Survey of Naming at Different Levels

This survey concentrates on Different Types of distributed naming systems, each of which
may be considered as a component of a general naming model for distributed computing

systems, which is defined in Section 2.4.1.

2.4.1 An Open Naming System Model

A typical pattern of naming objects is given in Figure 2.5-(a), where a client locates the
object in steps including descriptive naming (for example, using the Profile Name System
[Peterson 88]), primitive naming (for example, using Grapevine [Birrell 82]) before the
object manager is reached. Alternatively, a client uses the register service (name service,
see [Birrell 82]) and the object manager only to locate the object. It is also possible for
the client to use the object manager only.> Besides the difference in function, descrip-
tive naming is concerned with intelligent naming, while primitive naming and integrated

naming ( with the object manager) emphasizes unambiguity and efficiency.

A model for an open naming system is described by Figure 2.5-(b). In contrast to a closed
naming system, the open system is composed of a number of optional components, e.g. A,
B, C and D. It is not necessary for a naming system to have every component. Likewise,
some of the components may be bypassed by the client. For instance, a file system does
not usually need attribute-based naming. With the primitive name for an object obtained
from a previous query to a descriptive name service in hand, a user may not bother to

obtain it again on a later access to the same object.

5The Stanford approach [Cheriton 88] to a decentralised naming system focuses on naming handled
directly by the object manager. Client-name caching and multicast are exploited to implement the mapping

of names for good performance and fault tolerance.
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I An Open Naming System
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Figure 2.5: Naming Pattern and Model

2.4.2 Profile

Profile is an attribute-based (descriptive) naming service for a large internet [Peterson 88].
It has three main components: a confederation of attribute-based name servers, a name
space abstraction that unifies the name servers, and a user interface that integrates the
name space with existing naming systems. There are multiple naming authorities, i.e.
name servers, responsible for different set of principles, which are users or organisations
that sponsor some collections of resources. The name servers form a loosely coupled con-
federation with a non-hierarchical name space. Profile supports a name space abstraction
that unifies the confederation by providing an extended syntax for specifying attribute-

based names, and a discipline for contacting a multiplicity of name servers etc.

2.4.3 Grapevine

The Grapevine system [Birrell 82] developed at the Xerox PARC provided facilities for
mail delivery, naming, authentication and locating. The message server, the file server as
well as user programs were all clients of the registration server - a primitive naming service.
Clients view a single Grapevine server although it was implemented by a multicomputer

system. A single naming convention was used. In spite of under the control of a single
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authority, the system was running on the Xerox research internet which connected sites

not only in the United States, but also in England, Canada and France.

2.4.4 Internet Addressing and Routing

Naming on the higher levels of distributed systems has been given in the previous sections.
In this subsection, examples of naming at the lower levels, i.e. addressing and routing on
the Internet, are illustrated. One should not be confused by the term address; it is in fact

the name to which an object is bound.

Addressing

The Internet uses 32-bit binary addresses as universal machine identifiers which are com-
posed of three parts: classid, netid and hostid. They are three classes of address; each
allows certain range of netids and hostids. For example, class A address allows a few
hundred networks with over a million hosts each. The ARPANET has the class A address
10.0.0.0.. Example connections of the Internet by Comer [Comer 88] are shown in Fig-
ure 2.6. The Internet address refers to network connections, thus hosts with more than
one connections have multiple addresses, such that host MERLIN has two: 128.10.2.2 and
192.5.48.3. The Internet address can be used not only by networks, hosts, but also all

hosts on a network (broadcasting).

Routing

Routing is the process to decide the path for sending packets given the destination address.
IP routing concerns where to send a datagram based on its destination address. If the
destination host lies on the same address to which the source host is connected, the route
is direct, otherwise it is indirect, and the datagram must be sent to a gateway for delivery.
Sending a datagram over a network involves resolving its address to the physical address,

encapsulating the datagram, and sending the frame using the underlying hardware.

2.4.5 Summary

In this chapter, naming concepts, models and techniques have been introduced, with em-
phasis on naming in distributed systems. A notable feature of distributed naming is the
expansion of the system in both number of objects and types. Some existing naming
systems are outlined for their distinguishing identities: namely, descriptive naming, prim-
itive naming and lower level naming. An open naming system architecture is defined to

accommodate these different types of naming.
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Figure 2.6: Example Connections for an Ethernet, Ring Network and ARPANET



Chapter 3

Designing a Universal Name

Service

3.1 Introduction

Although constructing distributed systems appears to be more difficult than people fore-
saw, a great many distributed systems, such as distributed computing systems, mail sys-
tems, language systems, storage systems and name systems, have been studied and imple-
mented [Needham 82, Birrell 82, Walker 83, Bacon 87, Mullender 87, Liskov 88]. Despite
implementational difficulty, distributed systems have shown great potential because of
their availability, reliability, fault tolerance, as well as scalability. In this chapter, some
general aspects of designing a very large distributed naming system - the Universal Name
Service (UNS), are discussed, based on the experience of previous work mentioned above.
This section motivates the design and explains the goals of the UNS. Section 3.2 gives
a brief survey of related work. Section 3.3 describes the design of UNS in detail, and
section 3.4 presents the abstract interface to the UNS.

3.1.1 Motivation

Historically, name systems have been implemented initially in a centralised manner, such
as the ARPANET name server maintained by SRI-NIC. As distributed computing systems
develop, more and more distributed or decentralised name systems have emerged, either
in real life or in designs and prototypes, notably Grapevine [Birrell 82], Clearinghouse
[Oppen 83], the Global Name Service (GNS) [Lampson 86], the DARPA Domain Name
System [Mockapetri88] and QUIPU [Kille 89]. The CCITT X.500 / ISO 9594 Directory

16
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Service [X.500 88] has been adopted as an international standard. A desirable name service
for future wide area computer networks should be distributed, accessible from anywhere in
the world, reliable, inter-operable among heterogeneous networks and computer systems,
secure and fault-tolerant. Growth of such a system in order to meet increasing demands
should ideally be carried out in small steps without changes of major techniques. Although
many naming systems or designs exist, few have adequate abilities to tackle scalability,
availability and fault tolerance. The scalability problem has been discussed in the previous
chapter. Furthermore, it is observed that although using stale naming data (hints) at the
application level is acceptable in most cases, as long as it is detectable and recoverable,
stronger naming data integrity should be maintained to provide a better guarantee of
finding objects, especially when a high degree of availability is required. Configuring a
name service is usually done in an ad hoc manner, leading to unexpected interruptions
or a great deal of human intervention when the system is reconfigured. It is necessary
to further study distributed naming issues in order to build a more efficient and robust

global name service.

In this chapter, the design of a universal name service is presented, and its features are
described.

3.1.2 Design Goals

o Flexibility of name space restructuring
The UNS name space should be able to grow to accommodate other name spaces.
A directory/name server should also be allowed to move from one server/address to

another.

e Dynamic service configuration
Dynamic service configuration deals with, for instance, changing the replication set
or moving servers around when the UNS is operating. Work should be done on
setting conditions and developing algorithms to make such configuration transparent

to clients.

e Fault tolerance
The UNS should continue to operate in the presence of network failures, site failures
or client failures. Partial failures of the service should not cause the entire naming

system to become unavailable. The effect of failures should preferably be localised.

¢ High availability

The UNS is a frequently used service and is used by many other services. For
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instance, a message delivery server may cooperate with a nearest UNS server for
good mail service. A user can send a query to a UNS server connected to the same

local network for quick response.

e Strong data integrity
Most name services provide high availability for both queries and updates, but few
of them offer accurate naming data. The UNS attempts to enable its clients to find
out the most recent information by maintaining strong integrity of naming data.
There is a trade-off between data consistency and update availability. Prototyping
with the UNS will show later that under naming circumstances, high availability can

be achieved without sacrificing data integrity.

3.2 Related Work

A survey of naming systems of different types has been given in Chapter 2. This section

presents a brief survey of some global naming systems.

3.2.1 The Global Name Service (GNS)

The GNS designed by Lampson et al. [Lampson 86] is a basis for resource location,
mail addressing and authentication. Issues such as high availability, large size, continuing
evolution, fault isolation and tolerance of mistrust are addressed. The GNS, however,
lacks the ability to resolve unique Directory Identifiers (DIs) as the system grows, which
restricts its ability to restructure name spaces in case of need. The GNS uses the sweep
algorithm to propagate updates, which provides no guarantee that clients will discover the

most recent data. Dynamic service configuration is not fully supported.

3.2.2 The Domain Name System

The Domain Name System (DNS) [Mockapetri88] is a well known and widely used name
service. A typical domain name has the following form: XX.LCS.MIT.EDU. There is
no implementation of unique identifiers such as in the GNS and the UNS. The system is
neither migration nor naming transparent. For example, if one wants to add US as a new
root to the current system, it will cause a large number of domain names to be changed,
i.e. XX.LCS.MIT.EDU becomes XX.LCS.MIT.EDU.US. This is impractical. Although a
domain name looks like a UNS Name, it is relative to a context which may be changed,

while a global unique identifier is not.
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3.3 Overview of the Universal Name Service

This section discusses general aspects concerning the design of the UNS. The UNS is a
primitive naming system addressing issues such as large scale, evolution, reconstruction,

fault tolerance, availability and reliability.

3.3.1 The UNS Fundamentals

UNS Naming Domain : Possible objects in the UNS naming domain are end users,
directories, indexes, mailboxes, machines, services, and other resources. A direc-
tory is an entity which contains a naming context. Each object is represented in a
directory by a single, named entry. Each entry is composed of a number of proper-
ties, represented by a set of attributes. An attribute has a type which defines the
generic class of the property, and a value which is a specific instance of the type. In
terms of the ASN.1 [ISO86], an attribute, an entry and a directory can be specified

as follows.

Attribute ::= SEQUENCE {

type AttributeType,

values SET OF AttributeValue }
Entry ::= SET {

name [0] PrintableString,

attributes  [1] SET OF Attribute }
Directory ::= SET {

version [0] TimeStamp,

entry [1] SEQUENCE OF Entry }
Index ::= SET {

version [0] TimeStamp,

entry [1] SEQUENCE OF Entry }

Example attributes are:

internet address = 192.5.48.1
password = xx#1ztq08

user id = cml19
An example entry is:

Chaoying Ma — {
password = NI0O9U8ecmCV9d2

nfs server = { ely, cormorant }
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Figure 3.1: Examples of the UNS Name Spaces

user id = cm

e-mail address = cm@uk.ac.cam.cl}

Any object is represented by an entry consisting of a name and a set of attributes.
An example object class may be as follows:

Object-Class = { index, directory, individual, group }

UNS Name Space : A UNS Name space contains all valid names within an administra-

tion. If a name space is contained by another name space, the name space is called
a sub-name-space. For instance, suppose CL is the name space for the Computer
Laboratory at Cambridge, and CAM is that for Cambridge University, then CL is a
sub-name-space of CAM. A tree structure is frequently used in name server designs,
despite the fact that it allows each of its nodes to have only one name. Alterna-
tively, a rooted, acyclic directed graph can avoid the uniqueness constraint of trees.
Furthermore, a group of such directed graphs allows several name spaces to coexist,
forming the UNS name space. Figure 3.1 illustrates some example sub-name-spaces
of the UNS. Note that each directory is associated with a “UDI” besides its relative
name. For instance, the directory with a relative name “DEC” is associated with
“4022”. In the next chapter, it will be seen that UDIs are used to locate directories

whose positions in the name space may change.

Name Structure : The name structures allowed by the UNS naming convention are

defined by the following Backus-Naur Form:

simple name ::= <any printable string without />

relative name::= <simple name> | <relative name> / <simple name>
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DN ::= UDI | UDI / <relative name>

IN ::= < relative name>

e UDI: A UDI is a global Unique Directory Identifier. The generation of a UDI
requires an inter-domain agreement that is adhered to by all parties partici-
pating in the UNS. Methods of producing such identifiers independently L are
beyond the scope of the thesis. The reason why each directory should be given
a UDI will be explained in Chapter 4.

e Absolute Name: An absolute name has the form (DN,IN), which consists of
two parts: where DN denotes a distinguished Directory Name, and IN denotes
an Individual Name, which is relative to the context specified by DN. A dis-
tinguished Directory Name (DN) can be either a UDI or a string of characters
starting with a UDI, for example, “#123/cam/cl”. An IN can be a path name
which designates a node in a value tree, or any form that a local administration

defines; for example, “srg/cm”.

¢ Soft Link: The value of a name is a soft-link, which is another DN. An ex-
ample is given in Figure 3.1, where the value of #9/SPEECH is the soft-link
#101/ENG/SPEECH. 2

3.3.2 Name Resolution

Under the assumption that all names are structured and only context relative naming is

allowed, 3 the UNS name resolution can be defined as follows:

Rulel: Looking up DN = UDI/name;/namesy/.../name, yields the directory d; where
name; is defined, looking up d; yields the directory d; where names is defined, and so
forth. The process ends when no more relative names, i.e. name;, 1 < i < n, are left
unresolved.

Rule2: The name IN is defined in the directory named by DN. The rule for resolving IN
is the same as Rulel.

Rule3: If looking up a name UDI;/nq/ny/.../n,, yields a soft-link UDIy/nf/nb/.../ni,
Rulel applies to resolve the soft-link.

To start a name resolution with a given name, a context is needed. A starting context

There are many methods to generate unique identifiers independently. For instance, a UDI may be

formed by combining a wall clock reading and a site id.
2See also Chapter 4.

3An example for non-context-relative naming can be found in [Mann 87].
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Figure 3.2: Mutually Encapsulated Name Spaces

can be either a global one or a local one. In the UNS design, a name resolution normally
starts from a global context as specified by the DN at the first time the name is looked
up. Caching may be used to avoid going to the same context again when the name is
encountered later. For example, if the name (#101/CL/SRG, xyz) is given, see Figure 3.1,
the directory CAMBRIDGE is the starting context. In order to resolve (#101/CL/SRG,
xyz), the directory CAMBRIDGE is first looked up to get CL, then the directory CL is
looked up to get SRG, and the directory SRG is finally looked up to resolve “xyz”. In
the UNS, resolution of DNs is implemented differently from that of INs. The distinction
is made because their naming semantics is different: INs can belong to heterogeneous
naming architectures, but DNs cannot. In a local environment, for instance, within the

Engineering Department, the starting context for name SPEECH /m.phil/xyz is directory
SPEECH.

Once a name resolution starts, it must be terminated in a finite number of steps. In general,
when name resolution yields a real value rather than a context name, the procedure ends.
A naming network must be configured very carefully to avoid loops. Hierarchy structures
and directed acyclic graphs are cycle free. A well formed acyclic naming network may
become a part of a cyclic naming network, however, which for example, serves a federated
naming system. Figure 3.2 shows two mutually encapsulated name spaces, which will lead
to non-terminating name resolution. In the UNS, only rooted, directed acyclic graphs are

permitted to form name spaces.

3.3.3 Name Service and its Components

A name service assigns names to objects 4 and resolves given names. A name service
consists of six major components: a naming context, a naming network, a naming conven-

tion, a name resolution mechanism, a naming database and a name server. As described

*Note that a context is also an object.
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Figure 3.3: Three Kinds of Navigation

above, names are constructed according to naming conventions. A name service applies a
name resolution mechanism to a set of naming contexts in order to resolve names. Nam-
ing contexts are organised as a naming network, in which contexts are stored by servers.
Distributing contexts among the servers reflects the configuration of a name service. In
a distributed environment, a number of name servers work collectively to provide a name
service. A name database is partitioned and distributed among servers. A name server
can be viewed as an instance of a name service. Note that different service instances may
or may not contain the same naming contexts; the former reflects replication, while the
latter reflects partitioning of the name space. Replication and partitioning can be done in

many ways; these will be addressed in Chapter 5.

In many naming system designs, a User Agent (UA) component is used. A UA is a
collection of programs which provide the interface to name servers and locate servers at

the start of name resolution.

Navigation is the process of forwarding an operation to a name server for execution. Once
a naming network is set up, navigation can be done step by step following pointers which
refer to other servers (see Figure 2.3). Since a server may store more than one context, the
number of navigation steps required should be less than the number of closure steps. As
shown in Figure 3.3, navigation can be controlled by a UA or a server. In the former, the
UA is responsible for communication with one or more servers to resolve a given name. In
the latter, the server assumes overall responsibility for contacting other servers in a non-
recursive or recursive way. Figure 3.3 illustrates the three ways in which a navigation can
be done. In a very large distributed environment, using (a) or (b) only may be impossible

because of access restrictions. If there is underlying broadcast or multicast support, (a)
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and (b) are more efficient than (c), but (c) is generic. The UNS combines all three into a
hybrid navigation style. For instance, a UA may contact some local servers concurrently
using (a) when the name resolution starts, then one of the servers being contacted fulfils

the rest of the task using (c).

Another important issue on designing the UNS is security. There are two aspects in-
volved: authentication and protection. Authentication is concerned with identification
issues, such as setting up a secure channel between two servers, or between a server and a
client. Protection is concerned with two issues: (a) a server should provide services only to
those clients who are authorised to use it, and (b) only an authorised server should offer
the required service. Security naming systems can be provided by appropriate access-
control mechanisms. For instance, an access control list can be attached to each object
entry which needs to be protected. Each time that the entry is referred to by a principal,
the access rights of the principal are checked. The access right may be any combination
of {read, update, test}. This research does not focus on security issues, and the design

does not make any significant difficulty for implementing security mechanisms.

3.4 An Abstract Interface for the UNS

The previous sections have described the abstract structure of the UNS in terms of name
spaces, entries and attributes. This section presents the abstract interface which defines
the access protocols for the UNS. The abstract operations are specified in terms of ASN.1
[ISO86]. The protocols are layered and will be supported by an RPC (Remote Procedure

Call) mechanism.

3.4.1 The UNS Architecture

The client accesses the UNS via the User Agent (UA) which is composed of a number
of abstract operations for querying, updating or manipulating the naming data. The
UA resides on every machine where the client will make use of the UNS. As shown in
Figure 3.4, the client accesses the UNS through the UNS client interface; there is also a
UNS administration interface which provides the UNS system administrator with a tool
for managing the UNS database. The next two sections describe the abstract UNS client

and administration interface respectively.

3.4.2 Client Interface
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Figure 3.4: The Abstract Architecture of the UNS

EnumerateEntry

AddEntry
DeleteEntry
ReadEntry
ModifyEntry
TestEntry

ListDirectory
CreateDirectory
RemoveDirectory

MoveDirectory

CheckGoodness

Operations for Entries
Enumerate all the attributes associated
with a named entry
Create then add an entry to a specified directory
Delete the named entry from the directory
Read the attributes of the named entry
Modify the entry in a directory
Test whether some attributes are there
Operations for Directories
List all the directory’s child entries
Create a directory entity
Remove a directory entity
Move a child directory from the current parent
directory to another one

Others

Check the version number of a directory

Figure 3.5: Summary of UNS Client Interface
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First of all, the client interface is pictured in Figure 3.5. The following error signals can

be raised by the operations:

1. InputError: This includes error signals such as InvalidName, InvalidAttributeType,

etc.

2. AccessError: This contains all access violation errors such as NoRight, NoUpda-
teRight etc.

3. ReadError: This could be any of the following: UnknownEntry, UndefinedAttribute

etc.

4. GeneralError: This describes general errors such as ServerNotAvailable, Client Time-

Out, ServerTimeOut etc.

5. TestError: This contains errors such as TypeNotMatch, ValueNotMatch etc.

Type checking and access control are done whenever an operation is invoked.

The following operations are defined:

ReadEntry: The ReadEntry operation requests read access to an entry, and returns the
specified attributes in (type, value) pairs. If the Accurate option is chosen, the server
provides the most recent data, otherwise the server responds as quickly as possible with

data which may well be out of date. When a failure occurs, a general error is signalled.

ReadEniry ::= ABSTRACT-OPERATION

INPUT ReadInput

RESULT ReadResult

ERRORS { InputError,ReadError,AccessError}
ReadInput ::= SET {

entry [0] Name,
types [1] AttributeType,
option [2] {Accurate, Hint }}

ReadResult ::= SET {
attributes  [0] Attribute
[1] SET OF ReadError }

EnumerateEntry: The EnumerateEntry operation checks both the INPUT and the
access rights. If no error condition is received, it returns all the attributes associated with
the named entry. Similarly to the ReadEntry operation, the Accurate or Hint option can

be chosen by the client, and failures, if any, are reported.

EnumerateEntry ::= ABSTRACT-OPERATION

INPUT Enumeratelnput
RESULT EnumerateResult
ERRORS { InputError, AccessError}

Enumeratelnput ::= SET {
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entry (0] Name,

option [1] { Accurate,Hint }}
EnumerateResult ::= SET {

attributes [0] Attribute

[1] SET OF ReadError }

ModifyEntry: The ModifyEntry operation requests update access to the named entry.
It can add or remove attributes, or replace an old attribute value with a new one. The
modification can be a single operation or a group of operations. In the latter case, a
transaction may be used if it is requested. This is not usually supported by a name
service however, due to its cost. As indicated in previous sections, an AttributeType may
be a soft-link, whose value is a DN. The ModifyEntry operation can be used to add or

remove the soft-link for an entry.

ModifyEntry ::= ABSTRACT-OPERATION

INPUT ModifyInput

RESULT ModifyResult

ERRORS { InputError,ModifyError,AccessError}
ModifyInput ::= SET {

entry {0] Name,

modifications [1] SET OF Modification }
Modification ::= SEQUENCE {
type AttributeType,
CHOICE {
add  [0] AttributeValue,
delete [1] AttributeValue,
replace(2] SEQUENCE {
old AttributeValue,
new AttributeValue }}}
ModifyResult ::= NULL

AddEntry: The AddEntry operation creates the entry for an object to be named. The
entry name is therefore the object name. There may be zero or more attributes associated

with the entry. The created entry is then added to the specified directory.

AddEntry ::= ABSTRACT-OPERATION

INPUT AddInput

RESULT AddResult

ERRORS { InputError,AddError,AccessError }
AddInput ::= SET {

directory [0} Name,

entry [1] Name,

attributes [2] SET OF Attribute }

AddResult ::= NULL

TestEntry: the operation compares the specified attributes with those stored by a direc-

tory. If they do not match then a TestError condition will be returned.

TestEntry ::= ABSTRACT-OPERATION

INPUT TestInput

RESULT TestResult

ERRORS { InputError,TestError,AccessError }
TestInput ::= SET {

entry [0] Name,

attributes [2] SET OF Attribute }

TestResult ::= NULL
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DeleteEntry: The DeleteEntry operation removes the named entry and its associated

attributes.

DeleteEntry ::= ABSTRACT-OPERATION

INPUT Deletelnput
RESULT DeleieResult
ERRORS { InputError,DeleteError,AccessError}

Deletelnput ::x== Entry
DeleteResult ::= NULL

ListDirectory: The ListDirectory operation returns all entry names of its child directo-

ries. Wildcard symbols may be used to select a subset of entry names.

ListDirectory ::= ABSTRACT-OPERATION

INPUT ListInput

RESULT ListResult

ERRORS { InputError,ListError,AccessError}
ListInput ::= SET {

directory [0] Name

option [1] {Accurate, Hint} }
ListResult ::= SET OF Name

CreateDirectory: The CreateDirectory operation sets up an empty directory object with
the default attributes, e.g. an access control list. The CreateEntry operation can then
be used to add object entries to the newly created directory. If a server name is given, a
check is made to find out whether the directory can be kept by the server or not. If not, a
NotHere error message is signalled. If no server name is supplied, the system will choose a
suitable server for the directory. A Unique Directory Identifier is returned if the operation

succeeds. The operation also causes the corresponding parent directory to be modified.

CreateDirectory ::= ABSTRACT-OPERATION

INPUT Createlnput

RESULT CreateResult

ERRORS { InputError,CreateError,AccessError}
Createlnput ::= SET {

directory [0] Name,

server [1] Name OPTIONAL }
CreateResult ::= SET {
udi UID }

RemoveDirectory: The operation destroys the specified directory. If the directory is

replicated, the operation removes every copy of it whether or not a server name is supplied.

RemoveDirectory ::= ABSTRACT-OPERATION

INPUT Removelnput

RESULT RemoveResult

ERRORS { InputError,RemoveError,AccessError}
Removelnput ::= SET {

directory [0} Name,

server [1]) Name OPTIONAL }
RemoveResult ::= NULL
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MoveDirectory: The operation changes the parent directory of the specified child direc-
tory. There is no need to indicate the old parent since it can be deduced from the name

of the child directory. Section 4.3 explains this in detail.

MoveDirectory ::= ABSTRACT-OPERATION

INPUT Movelnput
RESULT MoveResult
ERRORS { InputError,MoveError,AccessError}

Movelnput ::= SET {
child-directory [o] Name,
parent-directory [1] Name }
MoveResult ::= NULL

CheckGoodness: When a directory is created, a time-to-live stamp may be associated
with it. This operation verifies the time-stamp of a directory to check whether it has
expired or not. The operation also provides the client with a means to find out if a

directory is still there.

CheckGoodness ::= ABSTRACT-OPERATION

INPUT CheckInput

RESULT CheckResult

ERRORS { InputError,CheckError,AccessError}
CheckInput ::= Directory
CheckResult ::= Timestamp

3.4.3 Administration Interface

The operations described in the administration interface are used to manage the name
spaces, the name servers , the index (see the next chapter for more details) and the direc-
tory copies. These operations are normally carried out by system or network managers.

A summary of the interface is given in Figure 3.6. The operations are:

SetIndex: This operation creates the index object to resolve the GUDIs. A well known
server is specified to store the index. GUDIs, as well as server identifiers (SIDs), are added
by the InsertUDI operation. If the server is authorised to do updates, it is an authorised

server, otherwise it is a server that simply stores a copy but has no right to change the

copy.

SetIndex ::= ABSTRACT-OPERATION

INPUT SetInput

RESULT SetResult

ERRORS { InputError,SetError,AccessError}
SetInput ::= SET {

server [0] Name,
wellknown {1] NetworkAddress,
option [2] { AuthorisedCopy,Copy }OPTIONAL }

SetResult ::= UID

DestroyIndex: This operation removes the index and all its authorised copies. It is only

used when a catastrophe occurs on many authorised servers or their connection networks.



SetIndex
DestroyIndex
PrintIndex
AbandonUDI
ModifyUDI
InsertUDI

AddReplica
RemoveReplica
GetRSet

SetUpServer
DisableServer
EnableServer
RecoverServer
ReadState

NewNamespace

DestroyNamespace
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Operations for Indexes
Create a new index
Destroy an index
Print out all the content of an index
Throw away the UDI
Modify the UDI mapping
Insert the UDI to an index

Operations for Replicas

Add a new replica to a specified server
Remove a replica from a specified server
Get the replica set
Operations for Servers
Set up a new server
Disable a server
Enable a server
Restore the current state of the server

Get snapshot of the server state

Operations for Namespaces

Create a new name space

Destroy an existing name space

SetDefaultNamespace Set the default namespace for the server

Figure 3.6: Summary of UNS Administration Interface
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DestroyIndex ::= ABSTRACT-OPERATION

INPUT DestroyInput

RESULT DestroyResult

ERRORS { InputError,DestroyError,AccessError}
DestroyInput ::= SET {

index-id [o] UID }
DestoryResult ::= NULL

PrintIndex: This operation provides a current snapshot of the index for management

purposes.

PrintIndex ::= ABSTRACT-OPERATION
INPUT PrintInput
RESULT PrintResult
ERRORS { InputError,PrintError,AccessError}
PrintInput ::= SET {
index-id  [0] UID }
PrintResult ::= SEQUENCE {
GUDI UID,
CHOICE {
GUDI [o] UID,
addres{1) NetworkAddress}}

AbandonUDI: This operation disables and invalidates the given UDI.

AbandonUDI ::= ABSTRACT-OPERATION

INPUT AbandonlInput

RESULT AbandonResult

ERRORS { InputError,AbandonError,AccessError}
AbandonInput ::= SET {

GUDI uID }
AbandonResult ::= NULL

ModifyUDI: This operation requests update access to the index. It adds server identifiers
(SIDs) or addresses to, or removes SIDs or server addresses from the value set of the
specified GUDI. It may replace an existing SID or address with a new one. Since it
concerns the UNS configuration, only one operation is allowed at a time (see the safety

conditions given in Chapter 6).

ModifyUDI ::= ABSTRACT-OPERATION
INPUT ModifyInput
RESULT ModifyResult
ERRORS { InputError,ModifyError,AccessError}
ModifyInput ::= SET {
GUDI UID,
CHOICE {
add [0] CHOICE {UID,NetworkAddress}
delete [1] CHOICE {UID,NetworkAddress}
replace [2] CHOICE {UID,NetworkAddress} }
ModifyResult ::= NULL

InsertUDI: This operation inserts a GUDI with the indicated values to the index.

InsertUDI ::= ABSTRACT-OPERATION
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INPUT Insertinput

RESULT InsertResult

ERRORS { InputError,InsertError,AccessError}
IngertInput = SET {

GUDI fo] UID,

value [1] CHOICE {UID,NetworkAddress} }
InsertResult ::= NULL

The following operations deal with service configuration:

AddReplica: This operation adds a copy of the named directory to the indicated server.
The replica set of the directory is changed.

AddReplica ::= ABSTRACT-OPERATION

INPUT AddInput

RESULT AddResult

ERRORS { InputError,InsertError,AccessError}
AddInput ::= SET {

server [0] Name,

directory {1] Name }
AddResult ::= NULL

RemoveReplica: This operation removes the named replica from the specified server.

The replica set of the directory is changed.

RemoveReplica ::= ABSTRACT-OPERATION

INPUT Removelnput

RESULT RemoveResult

ERRORS { InputError,InsertError,AccessError}
Removelnput ::= SET {

server [0] Name,

directory [1] Name }
RemoveResult ::= NULL

GetNset: This operation returns the current members of the server name set of the

directory if “Accurate” is indicated, otherwise anything available.

GetNset ::= ABSTRACT-OPERATION

INPUT Getlnput

RESULT GetResult

ERRORS { InputError,GetError,AccessError}
Getlnput ::= SET {

directory [0] Name,

option [1] {Accurate, Hint}}
GetResult ::= SET OF Name

SetUpServer: This operation initiates a new UNS server with default configuration. The

CreateDirectory or AddReplica operation will add the naming context to the server.

SetUpServer ::= ABSTRACT-OPERATION

INPUT Setuplnput

RESULT SetupResult

ERRORS { InputError,SetupError,AccessError}
Setuplnput ::= SET {

server [0] Name,

attribute [1] SET OF Attributes }
SetupResult ::= NULL
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DisableServer: This operation changes the mode of the server from Working to Sus-

pending when the server is unable to continue its service.

DisableServer ::= ABSTRACT-OPERATION

INPUT Disablelnput

RESULT DisableResult

ERRORS { InputError,DisableError,AccessError}
DisableInput ::= SET {

server [0] Name,

mode [1] Suspending }
DisableResult ::= NULL

EnableServer: This operation changes the mode of the server from Suspending to Work-

ing when the server is restored.

EnableServer ::= ABSTRACT-OPERATION

INPUT Enablelnput

RESULT EnableResult

ERRORS { InputError,EnableError,AccessError}
Enablelnput ::= SET {

server {0] Name,

mode [1] Working }
EnableResult ::= NULL

RecoverServer: This operation causes the server to enter the recovery mode to restore

its corrupted naming contexts.

RecoverServer ::= ABSTRACT-OPERATION

INPUT Recoverlnput

RESULT RecoverReszult

ERRORS { InputError,RecoverError,AccessError}
RecoverInput ::= SET {

server [0] Name,
directory [1] Name,
mode [2] Recover }

RecoverResult ::= NULL

ReadState: This operation provides a snapshot of the server state.

ReadState ::= ABSTRACT-OPERATION

INPUT ReadInput

RESULT ReadResult

ERRORS { InputError,ReadError,AccessError}
ReadInput ::= SET {

server [0] Name }
ReadResult ::= SET OF Attributes

NewNamespace: This operation sets up the root directory for a new name space.

NewNamespace ::= ABSTRACT-OPERATION

INPUT NewlInput

RESULT NewResult

ERRORS { InputError,NewError,AccessError}
NewlInput ::= SET {

directory [0] Name,

server {1) Name OPTIONAL }
NewResult ::= UID
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DestroyNamespace: This operation destroys the root directory for a name space.

DestroyNamespace ::= ABSTRACT-OPERATION

INPUT DestroyInput

RESULT DestroyResult

ERRORS { InputError,DestroyError,AccessError}
DestroyInput ::= SET {

directory [0] Name,

server [1] Name OPTIONAL }
DestroyResult ::= NULL

UNS’sSetDefaultNamespace: This operation sets the default root directory for the

specified server. The default directory is used when a name resolution is started.

SetDegaultNamespace ::= ABSTRACT-OPERATION

INPUT SetDefaultInput

RESULT SetDefaultResult

ERRORS { InputError,SetDefaultError,AccessError}
SetDefaultInput ::= SET {

directory [0] Name,

server [1] Name }
SetDefaultResult ;:= NULL

The operations described above are not necessarily complete nor essential for a large
distributed name service, but represent a set of proposed interaction mechanisms to be
used by managers and clients when interacting with the UNS. Different languages and
system support mechanisms may be used for simplicity or efficiency when implementing

the interface.

3.5 Other Issues

Heterogeneity

In contrast to the Stanford approach [Mann 87] which aims to interface local name servers
to a global name service, the UNS approach aims to provide a single global service. The
UNS also allows different naming conventions and service architectures to be accommo-
dated within the global system.

To enable heterogeneous local name servers to work cooperatively under the umbrella of
the UNS may be seen as a functional extension to global name services such as the GNS,
or the X.500, which was designed as a homogeneous or standard directory service. Users
of the UNS should not be forced to adopt a single naming convention at the lower level
of the UNS naming hierarchy; resolution of an IN is not necessarily a part of the global

name service.
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Allowing heterogeneity in a name service can be problematic, however. One problem is
how to distinguish an unbound name from foreign names encountered by a name server;
another is how to incorporate those directories, whose structure is dependent on a native
naming architecture, into the global name service. The first problem is subtle if the DN
part of a name is heterogeneous, because a name which can not be found in local contexts
may be bound in a remote context. In principle, provided that any name server in a
global name system knows all naming conventions, erroneous names then can easily be
distinguished from foreign names. If no such server exists then there is no way to discover
unbound names until all possible contexts have been exhausted. In practice, however, the
space required to store naming conventions, the performance of the parsing mechanism
as well as simplicity of the user interface must be considered. In a centralised naming
system, it is easy to recognise an erroneous name because a server needs only consult the
contexts that it maintains. As mentioned in the last paragraph, the UNS allows a single

naming convention for DNs, and leaves INs to their local authorities to deal with.

The problem of accommodating directories into the global name service can be solved if
local names are structured and each component names a context.> For example, suppose
that an IN looks like “x.b.c”, and the local name resolution starts from right to left.¢ Before
“c” joins the global name space, the UNS name for entity “x” may be (#123/E/F/G,
x.b.c). The UNS resolves the first part - DN, and leaves the second part to be resolved
by a local name service. After “c” has joined the global name space, its new name is
(#123/E/F/G/c, x.b). If working context is used, it is easy for the local service to resolve
“x.b”. “4#123/E/F/G/c” may be treated as a newly added directory name in the UNS.
Every thing goes well after all. People may argue that the name for entity “x” has been
changed from (#123/E/F/G, x.b.c) to (#123/E/F/G/C, x.b) after c’s exportation to
the context “#123/E/F/G”. The novel aspect of ezporting is that only a new name -
(#123/E/F¥/G/c, x.b) is introduced to entity “x”, while its other names, i.e. full names
such as (#123/E/F/G, x.b.c), or short names such as “x.b.c” still work. On the other
hand, a local name server may refer to “#123/E/F/G/c” through the UNS, for it is now
globally resolvable. Using different separators 7 does not place any difficulty to directory

exporting, as explained above. For non-structured names, for example, a name to be

5The conditions are stronger than necessary because a multi-component name instead of a single name
may be used to refer to a naming context; in this case, if it has a different separator form , the context
can be easily exported. For instance, suppose the context name is “A&B”; the context can be exported to
the UNS, and named as “#123/X/Y/A&B".

8The UNS resolves a name from left to right.

7 . . . .
A structured name is also defined as a multi-component name, which is constructed by one or more

simple names (component) separated by a character called a Separator or a delimiter, such as “.” or “/”.
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resolved by a hash function, there is no simple way to extract the name for a context to

be exported.

Federated Naming

Existence of heterogeneity in a global name service is different from, although similar in
some aspects to, federated naming. The APM federated naming approach [Linden 90]
concentrates on “freedom of association”. However, the UNS approach emphasizes the
provision of a large scale, consistent, globally accessible name service for public access. The
UNS allows some degree of heterogeneity, particularly on the lower levels of the naming
hierarchy. The APM approach tends to give the naming authorities greater autonomy. In
order to achieve global coherence, the UNS hides the differences between naming systems
on the higher levels of a naming hierarchy. The UNS approach can be viewed as the

ultimate form of federated naming.




Chapter 4

Dynamic Construction of Name

Spaces

4.1 Introduction

If the development of the Domain Name System is reviewed, it is not difficult to find that in
its early days, the ARPA name space implemented as a simple text file was maintained by
a centralised name server. As the system grew, it was logical to partition the name space
so as to allow local control of local naming data; this led to the current hierarchical name
space maintained by a distributed name system. The DNS system makes no distinction
over names, i.e. any entity name has the same structure. The major problems with
this are: firstly, it lacks the ability to allow name space to be implemented according
to characteristics of the entities it names; secondly, there is little flexibility to enable the
name space to grow or to be re-organised as required. Similar problems exist in many other
naming systems. As systems expand, it is required that name spaces be restructured so
that entities in them can migrate without changing their names; it is also required that
name spaces be allowed to grow upwards by merging existing ones under a new root. It
is challenging to design a naming system which will continue to evolve in order to meet

organisational or operational changes.

It was not until the GNS [Lampson 86], that the distinction between context names and in-
dividual names within the context was made. An example GNS name is (ANSI/DEC/SRC,
Lampson/Mailbox); the first element denotes the SRC directory; the second element de-
notes Lampson’s mailbox. This division mainly reflects the radically different implemen-

tation of the two parts. The GNS directory tree implementation permits its name space
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to be reconstructed if required. This is intended to be done by using unique directory
identifiers (DIs). However, DI resolution is not generally supported by the GNS. Since
multiple name spaces may exist, the first part of the name division can be used to indicate
in which name space the second part is looked up. Despite the intention of re-organising
name spaces, the GNS suffers losing traces of directories when the system becomes larger.
As regard to multiple name spaces, there is no reason to assume that each prospective
name space to join the GNS should have exactly the same naming syntax, as demonstrated

in [Lampson 86].

In this chapter, further development of dynamic name space construction by using unique
identifiers, a name resolution model for resolving UDIs, server names and distinguished
names are explained. The UNS name spaces defined in Chapter 3 are implemented as a
logically centralised but physically distributed name space, in which two kinds of name
spaces coexist, one is flat and the other is hierarchical. The design proposes a more
effective name management scheme which forms the basis of the two-class name service

infrastructure to be introduced in Chapter 5.

4.2 Name Resolution Model

In this section, given the definitions in Chapter 3, the UDI resolution model is explained.
Technical aspects to implement a fully migration and organisation transparent global name
system using unique identifiers are examined; decisions of implementing the top part of
the UNS name space as a global UDI name space and allowing the bottom parts to be

implemented in a local preferred manner are made.

4.2.1 More On Name Spaces

In Chapter 3, the UNS name space is defined as a group of rooted, acyclic, directed graphs,
which are disjoint. In this section, a flat name space is defined which contains only a list
of UDIs. Figure 4.1 shows the two kinds of name spaces coexisting under an imaginary

super root.

The global UDI name space is defined as a subset of UDIs of the flat name space. The

reason to set up such a name space will be explained later in this section.

Readers may have already noticed that at the beginning of this chapter, the Domain Name
System was taken as an example to explain why the name space has to be partitioned

and distributed among servers. It seems that introducing a flat name space to the UNS
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Imaginary
super root

Figure 4.1: The UNS Name Space

is doing just the reverse. There is little doubt that a hierarchical name space is advanta-
geous when handling many entities. For example, naming conflicts can be easily avoided
and great autonomy is maintained in a hierarchical name space. However, it is disad-
vantageous in supporting flexible name space restructuring. For example, the Domain
name “xx.lcs.mit.edu” will no longer be a valid name if a “us” domain is to be made the
system’s new root. Although flat name spaces enable name resolution to be carried out
in one single step, so as to bring efficiency to the system, it is also obvious that using
only flat name spaces, such as the ARPA name system, cannot work because nowadays
many systems are too big to manage in that way. In the UNS, the two name spaces are
combined so that both scalability and flexibility can be achieved, which is not possible if
any single name space is used. More demonstrations of name space restructuring will be

given in the following sections.
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4.2.2 UDI and USI Resolution Model

Generally speaking, the advantages of unique identifiers are: they are location and or-
ganisation independent; they can be resolved by simple algorithms; they are relatively
shorter than text names. Although unique identifiers are useful in many occasions, e.g.
in authentication, in this chapter, it is focussed only on how to use unique identifiers
to achieve location and organisation transparency when the UNS is designed. Location
transparency means a name is not location dependent, so that moving entities does not
affect their names. Organisation transparency means naming does not rely on organisa-
tional structures, so that if an entity changes affiliation, its name does not change as a
result. For example, the name “#188/Cam/CL” does not indicate the network address of
the entity, but hints that the entity is a directory for the Computer Lab. at Cambridge.
Another example, suppose that the name “#9” is the UDI for the CL directory in the
above example, as people can see that it commits itself to nothing but a number. No
matter whatever possible changes are, such as moving CL’s location over networks, chang-
ing its authority from Cambridge University to Oxford University, “#9” can still be used
to identify the same entity.! Given the definitions above, there exist two kinds of name
space. One consists of a group of rooted, acyclic directed graphs; the other is a flat one
with a hypothetical super-root, which consists simply of a list of all UDIs. Each of the
two name spaces is a complete mapping of the other’s as far as the UNS directory graph
is concerned. However, the top part over the dashed line in Figure 4.1 shows a possible
construction of a partial UDI name space - the global UDI name space, in which only
supreme nodes, mainly UDIs at the top most position in each naming graph, are reflected

by the global UDI name space.

Setting up the global UDI name space indicates that although using a flat name space will
bring great flexibility of re-organising name spaces there is also a risk that the flat name
space becomes too big to manage. Is it necessary that all directories, no matter where
their positions are on the graph, be given a UDI so that any directory is relocatable? Since
UDIs are global unique identifiers, it is necessary for each directory to have a UDL If only
locating is concerned, the answer is no. Assigning to every directory a unique identifier
which is resolvable globally will allow freedom of constructing name spaces, but it is done
at the cost of performance declining; furthermore, scalability becomes a problem. It seems
neither necessary nor practical to do so. In the UNS, every directory entity is named by
a UDI besides its distinguished name, though only a set of those UDIs, also defined as
GUDIs (Global UDIs) are put into the global UDI name space.

1t may be argued that some entities’ names are abandoned after location or organisation changes.

However, it is assumed in this thesis that old names are still used.
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Assuming that the number of directories and servers to join the global UDI name space
is not more than several millions, and database change rate is very slow,? a global index
is introduced to resolve GUDIs in the global UDI name space. The name resolution is
very simple and straightforward, in spite of its important role in the UNS. In the index,
there are mappings between GUDIs to Unique Server Identifiers (USIs). A USI is then
mapped to the server address also by the index. It is possible to map GUDIs directly
to their server addresses without using USIs. It concerns tradeoff between performance
of enquiries and updates. If a USI is not used, to move a server, which implies possible
changes to all bindings of GUDIs to server address, will cause every entry containing the
server information to be modified. If a USI is used, more lookups are needed to find a
server’s address. Since USIs can be resolved by a single step in the index, and hence

GUDIs can be resolved in two steps, the cost of lookups is insignificant.

Global index entrances should be cached widely and rarely changed. The index is dis-
tributed globally according to internet topology and the reliability of communication links.
USI may be considered as a special kind of GUDI. As to implementation, a group of servers
will be responsible for maintaining the index and those servers are well known at the name

service administration level.

In summary, there are three levels of name mappings in the global UDI name space. At
the first level GUDIs are mapped onto distinguished names which are names relative to
some roots that are children of an imaginary super-root; at the second level, GUDIs are
mapped onto USIs (server identifiers); at the third level, server identifiers are mapped
onto network addresses. The multiple-level naming abstraction results in properties such
as location transparency, naming transparency and migration transparency. Location
transparency means that the location of a directory or a server is not reflected by its
name. Naming transparency means that changes of the name space, which are made in
order to respond to organisational needs for instance, will not cause the old name to be
abandoned. Migration transparency means that the effects of server or directory moving

from one location to another are hidden.

4.2.3 More On Resolving Distinguished Names

In Section 3.3.2, the general resolution model of UNS names was discussed. However it
was not mentioned how to derive a new context from the one being currently accessed.

In the UNS, once a component of a name is stripped off from a distinguished name, it is

2QObservations on the name graph show that entities sitting on the top level have a slow update rate

than those on the bottom level.
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The Global Index

#2 usi
#011 USli1
#022 usi2
#123 Usi3
#1 uUsli3
#188 usi4
#101 uUsl4
Usi1 adr1

uUsli2 adr2
UsI3 adr3
USi4 adr4

Figure 4.2: The Global Index

looked up in the current directory. If there is a match, then a server name is returned. The
server name must be resolvable either in the same context, or in a context which is closer
to a global context. For instance, assume that the current context is #101 (Cambridge
directory). If given the name “#101/CL/SRG” to resolve, looking up CL in the current
context will get a server name “#101/serverA”; to look up “serverA” in the same context
will get the address attribute of “serverA”; now the current context becomes “CL”. This
procedure is repeated until the address of a server keeping “SRG” directory is found. Note
that in order to avoid name resolution loops, the distinguished name for a name server
should be shorter than that of any entry in any directory the server stores - this is called
a shorter-server-name approach. On the other hand, if a server does not store a directory
whose name starts with a GUDI, the server must know another server that either has a
directory with a GUDI or is “closer” to such a directory. This is to ensure that the global
UDI name space is reachable and no loops will be formed during name look-up. In the

next section, some invariants to guarantee that:

1. server navigation is well constructed so that any context is reachable.

2. to resolve a name will not, at some stage of name resolution, get a handle which is

the same as the name itself - producing a name resolution loop.

will be described in a more formal way.

In the discussion above, it was assumed that there was a current context available. How
to get such a starting context remains unknown. In fact any name resolution starts from
a global context, which is one of the directories whose UDIs are in the global UDI name
space. Entrance to the global index is well known, and the index itself is widely replicated
or cached in the UNS. Caching is used to improve performance. For instance, the result of

looking up “#101/CL/SRC” may be cached to resolve any name within the same context.
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Servers will cache their own names so that they do not have to send them to the global

index for resolving.

4.2.4 Naming and Locating Name Servers

How to name and locate name servers is a very interesting issue. Should servers be named
in the same way as other entities, or should they be treated specially? Considering that
name servers may be on machines that are not only for naming but also for running other
services, i.e. several different services are coexisting on the same machine, it is necessary
to name all servers. To give a name server a name also enables location of the server to

be changed transparently.

There have been three ways to tackle server naming. The first method is to set up a global
context for keeping all server information. For instance, a registration database was used
by Grapevine to name registration servers, message servers and registries [Birrell 82]. The
database was widely replicated, i.e. every registration server of Grapevine knew the names
and addresses of all message and registration servers, as well as names of all registries and
all names of replication servers of those registries. Managing a system with a maximum
sites of 30 Grapevine servers and a total load generated by 10,000 users did not seem to
create scaling problems. However, going beyond the specification of Grapevine created
problems. One problem was that the resource location algorithm selected the nearest
up server from among those providing the resource in question. This would become too
expensive if a large number of servers were involved. It would also become more difficult to
have such a global context stored by every registration server. Another potential problem
could be that the cost of propagating updates became too high due to the heavy replication
of the service configuration data, as it was shown later by Clearinghouse [Demers 87] which
is the successor of Grapevine; although not like Grapevine, the configuration database has

been partitioned by introducing one more level of naming hierarchy.

The second method is to use the name service itself to store and to resolve server names.
For example, in the GNS [Lampson 86], resolving a directory name will get a server name
for that directory, so the next task is to resolve the server name. If a directory stays on
a server whose name contains the directory name, a loop is formed. Thus restrictions
must be introduced to the GNS in order to create proper server names. To use the name
service itself to resolve server names is carried out at the cost of putting more constraints

on naming and replication. There are three constraints (see [Lampson 86] for detail):

S1 Every directory d on a direct path from the root to an entry that stores a server




CHAPTER 4. DYNAMIC CONSTRUCTION OF NAME SPACES 44

address has d.inSN = true.

S2 If d.inSN = true, then either d is the root , or a copy of d is stored on a server with a

name shorter than any direct name of d.

S3 Every server s either stores the root, or s.up is a shorter name of another server, and

s stores a copy of the directory for s.up.

These invariants guarantee that the root of the directory tree is reachable by starting at
any name server. It prevents the loop that looking up a name server would in turn require
looking up the subject directory on that server. However by naming servers and resolving
server names in a similar way as that of other entities, the GNS avoids linear growth of the
configuration data as system size increases. It also improves the performance of updating

configuration data.

The third method is to treat configuration information as knowledge, which is attached
to a context to indicate a possible server holding the next context on a name resolving
chain. An example of such systems is X.500, in which locating name servers is done by
using a special data structure called knowledge. A X.500 system is composed of a number
of DSAs (similar to name servers), each of which is responsible for a group of fragments
which are subtrees of the global directory information tree. Navigation requires that each
DSA be aware of the responsibilities of other DSAs. The awareness is called knowledge.
A reference is defined as entries which associates the name and the address of a DSA with
names of fragments for which the DSA is responsible. Knowledge is implemented as a set

of references. For example, the reference describing the responsibility of a DSA could be:
3

{dsa:name of DSAn,
address of DSAn,

responsibilities:"/c=a/o=c/u=£f","/c=a/o=c/u=g"}
Minimal knowledge of a DSA can then be defined as:

MinimalKnowledge: :=SET{
self_dsa Reference,
immediate_superiors SET OF Reference,

immediate_inferiors SET OF Reference}

8For in the standard itself, knowledge reference is not very clearly represented, the example is taken

form [Benford 88], in which, ASN.1 is used to represent knowledge reference.
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Minimal knowledge is essential for navigation to occur; as can be seen in the example,
minimal knowledge for a name server contains its immediate superior server’s reference
as well as its immediate inferior server’s. In [Benford 88)], a method for maintaining such
knowledge is proposed. However, it is argued in [Kille 89], which describes the UK pilot
X.500 project, that there is no need to have additional information such as knowledge to

deal with a name service’s own configuration.

So far we have seen three methods of naming and locating name servers. The first method
is simple and easy to be configured or re-configured, but it does not scale properly. The
advantage with the second method is no special method for maintaining configuration data
is necessary. However, the disadvantage is that it enforces a set of rigid rules for server
naming and directory replication. The third one is that server information is treated as
special naming data. Particular methods are needed to deal with the special data, and it

could lead to a complicated design.

In the UNS, name servers are named by the service itself, but they are treated slightly
differently from individuals. Individuals cannot appear in any directory in the UNS name
space but a name server entity can. A Reference is defined as a set of server name to
address mappings which are kept by a name server for proceeding with navigation. In the
absence of replication, a reference is essential for the navigation to proceed. With the help
of caching or replication, the usage of references may be reduced a great deal. This will

be further discussed in Chapter 6.

In order to implement the UNS name resolution model, there are three server invariants

that should not be violated when running the service.

Definition4.1 A context .4 on a naming network N is said to be closer to a global one G
(represented as >g) than another context B, if and only if its direct path name from
G is shorter than that of B. This can be represented as: A <g B iff Pg(A) < Pg(B),
where P;(j) defines the direct path name from i to j. Similarly, suppose the name

server s; storing A, s storing B and Pg(.A) < Pg(B), therefore s; <g s3.

Definition4.2 A server s is a root server iff {3G € G | Vs; € S, 8 <g s;}, where
G denotes the set of global contexts, and S denotes the set of all name servers

comprising the UNS, <g means closer to G and =g means closer or equally close to
toG. 4

The UNS server invariants :

*Note that for any directory with a GUDI, it is defined that {¥G: € G | VG; € G, Gi = G;}. This

definition indicates that any two global contexts are equally close to each other.
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rl If s € S is not a root server, its distinguished name should be shorter than the distin-

guished names of any entry in any directory it stores.

r2 If s € S is not a root server, it must store references to other name servers which are

either root servers or are closerto G.

r3 If s € S is a root server, it must contain the global index.

rl guarantees that no name resolution loop is formed by naming servers. r2 ensures that
a given name is either resolvable or found unbound in case it is invalid. Usually in a
hierarchical name space, if the root is reachable, then all names in the name space can be
resolved. However, the UNS name space is composed of several disjoint name spaces. The
global index has been introduced to allow names in all name spaces to be resolved starting
from any name space. Within a name space, its root (one of the global contexts) can be
reached, which is assured by r2. r3 ensures that if a global context can be reached, all
global contexts can also be reached. A name server will cache name to address mapping of
itself so that it will not have to look up its own name. Maintenance of service configuration

data will be discussed in Chapter 6.

An alternative approach to guarantee that a global context can be reached starting at any
server is to store the global index on every UNS server - a heavy replication approach.
Although it improves the efficiency of name resolution, it makes update propagation more
difficult even though the change rate of the index is small. However, a weak-point of
the former is that, besides more costly name resolution, the complexity of configuring
the name service is increased if compared with the heavy replication approach. However,
the performance of propagating updates can be improved because a particular set of the
configuration data is only replicated on a much smaller scale. For instance, only those
servers which store the child directories will need to keep references to some servers which

have the parent directory.

Suppose that the maximum depth of the naming network is not greater than 5, e.g.
each level on the network (a tree) represents correspondingly the imaginary super root,
countries, organisations, units within an organisation, and groups within a unit. There
are about 200 x 200 + 200 entities at three top most levels, 30 x 20,000 at the forth, and
10 x 600, 000 at the fifth. It is also assumed that there are about 100 root servers, 100 x 200
organisational servers and 100 X 200 x 30 unit servers(e.g. every two countries share a
root server, every organisation has an organisational level server, and every unit within
an organisation has a unit level server). If the global index is replicated everywhere, then
620,100 copies exist. Each time the index is updated, at least 620,000 messages are created

on the internet. If the index is only replicated among organisational level servers, then
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20,100 copies exist and less than 30 time messages are produced per update.® Regarding
name resolution cost, only one more time indirection will be introduced if compared with
the heavy replication approach. This analysis suggests that communication network traffic
may be significantly reduced by using references instead of heavy replication. How much

complexity this introduces will be discussed in Chapter 6.

Server name resolution can be carried out as was discussed in Section 3.3.2 and Sec-
tion 4.2.3. Navigation is implemented by making the server name resolvable no matter

where name resolution begins.

4.3 Examples of Dynamic Name Spaces Construction

Given the definition of the abstract operations in Chapter 3, the ability of the UNS to

merge or restructure name spaces is demonstrated in this section.

4.3.1 Growth

Merging two existing name spaces is illustrated in Figure 4.3. Suppose there are two
name spaces B and C with the root directory B and C respectively. The GUDI #121 is
assigned to B when B is created; #131 to C. Before the merging takes place, DNs look like
#121/n4/.../nm in the name space B; similarly, #131/n)/.../n; in C. After the merging,
a new root directory A is created with GUDI #111; A, B and C are all members of the
GDUI Name Space, which is flat. Any DNs such as #121/nq/.../np, #131/n}/.../n],
#111/B//n1/.../nm, and #111/C/n}/.../n] are resolvable names in name spaces A, B

and C. Operations involved are: NewNameSpace, MoveDirectory, InsertUDI.

4.3.2 Restructuring

Moving a directory is demonstrated in Figure 4.4. Suppose directory B and C are child di-
rectories of directory A. Now C is to be moved as a child of B. Before the move, any DN con-
taining C may look like #111/C/nl1/.../n;, but after the move, both #111/B/C/nl/.../n,
and #111/C/n1/.../n; are valid names. The DN #111/C/nl1/.../n; is replaced by the soft-
link #111/B/C/nl/.../njor #131/n1/.../n; if C’s GUDI is kept in the GUDI name space.
Operations involved are: ModifyEntry, MoveDirectory.

5Updating references may cause approximately 200 messages to be sent, which may be ignored.
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Figure 4.3: Restructuring the name space by merging name spaces
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Before Moving After moving

Figure 4.4: Restructuring the name space by moving a directory




Chapter 5

Maintenance of the Naming

Database

5.1 Introduction

In this and the following chapter, name service maintenance, in particular the replication
control and dynamic service configuration, is discussed. Maintenance of the UNS largely
relies on the protocols of consistency control. Although it is widely believed that loose
replication control mechanisms are good enough to satisfy name service requirements,
after comparing several replication control mechanisms, and exploiting naming system
semantics, it is found that better maintenance can be achieved by using not only a loose
replication control but also a tight one. In fact, it is very difficult for any single replication
control method to meet all the requirements for maintaining naming data. Therefore, a

two-class name service infrastructure is proposed.

The infrastructure emphasizes that different methods of replication control should be used
to reflect different semantics of naming. Loose replication control algorithms simply will
not suit all naming requirements. For instance, considering a particular set of data in
a large distributed naming system, it is valuable to allow those clients who are more
interested to be able to get the most recent changes. On the other hand, if naming data
is heavily replicated, it is expensive and unnecessary to force all replicas to be consistent
immediately; it is less satisfactory to make them comnsistent eventually only - provided no
more updates will occur, consistency will be finally reached. So, new methods are required

to ensure eventual consistency as well as to find out, in a timely way, what is current.

In the following sections, the newly proposed consistency control mechanisms are intro-

49
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duced. Section 5.2 reviews a number of mechanisms that can be used for maintaining
naming database. Section 5.4 describes the two-class service infrastructure. Section 5.5
gives details of the protocol developed for the first class service. Section 5.6 explains how
updates are propagated among servers, and finally Section 5.7 discusses how caching is

used to improve performance.

5.2 A General Review of Replication Algorithms

A brief review of some well-known replication control algorithms is given in this section.
The intention is to outline the advantages and disadvantages with respect to naming
database maintenance, to investigate the possibility of them being used for naming sys-

tems, and to explain the necessity of developing a two-class name service infrastructure.

5.2.1 Primary Site

Primary-site methods have been developed for replication control of distributed databases
[Alsberg 76, Stonebrake79]. The original method worked roughly as follows. One replica
is designated the primary and the rest are slaves. Different objects may have different pri-
mary sites. Each update should be applied to the primary. The primary site is responsible
for informing all, or a majority of, slaves. On receiving the new updates, a slave sends
an acknowledgement to the primary; the primary waits for sufficient number of acknowl-
edgements to decide whether to commit; if it decides to, it informs the client; otherwise it

decides to abort, each site should back out the transaction.

QUIPU [Kille 89] employed an algorithm of this sort, but in an asynchronous way. For
instance, QUIPU defines a master DSA which maintains a master copy of a certain portion
of naming data, and also defines a number of slave copies stored by other authorised DSAs.
When an update is done on the master copy, the master DSA will propagate it to all slave

copies if requested.

The primary-site methods suffer from a centralised control, and possible bottleneck at the

primary site. It is also vulnerable to site or communication failures.

5.2.2 Quorum Consensus

Quorum consensus algorithms [Bernstein 87] such as weighted voting [Gifford 79] can be

used for general replication control. The idea is to assign to each replica a number of
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votes for reads(r) and writes(w), and the sum of 7 and w should be greater than the
total number of votes(v), i.e. w+r > v and w > v/2. A transaction must collect a
read-quorum before any read, and a write-quorum before any write. This method is more
robust than primary-site, because there is no centralised control. Applications can adjust
availability of reads and writes by varying the number of votes assigned to each replica.
Quorum consensus can work well with network partitions or site failures, but it pays for its
resiliency to communication failures by increasing the cost of read and by increasing the
required degree of replication. This cost is high if communication failures are infrequent.
It would be preferable if the cost could be reduced during reliable periods of operation,
possibly at the expense of higher overhead during unreliable periods. Few naming systems
use voting, but file systems such as [Bloch 82, Gifford 79] do, and an underlying multi-site

atomic action environment is assumed in both cases.

The Paxon part-time parliament protocol [Lamport 89] does not need the support of multi-
site atomic action although it uses voting too. It has fewer restrictions than algorithms
such as weighted-voting with respect to replication controls but is less generic because it
does not support the transaction abstraction. It requires up to 5n message exchanges and
5 rounds. An optimised Paxon protocol has only 3 message delays and about 3n messages.
The Paxon protocol does not tolerate arbitrary, malicious failures, nor does it guarantee
bounded-time response. However, consistency is maintained despite the failures of any
number of processes and communication paths. Thus, the Paxon protocol is suitable
for systems with modest reliability requirements that do not justify the expense of an
extremely fault-tolerant, real-time implementation. Later in this chapter, a UFP protocol

based on the Paxon protocol is developed for the UNS.

5.2.3 Commit Protocols

The two-phase (2PC) and the three-phase (3PC) commitment protocol are well known in
distributed database management systems [Stefano 87, Bernstein 87]. The protocols are
performed by a distributed transaction manager (DTM), called coordinator, together with
a number of DTMs, called participants. The basic idea of commit protocols is to make a,
unique decision for all participants with respect to committing or aborting all the local
operations. 3PC is resilient to site failures only. With network partitions, however, it is
possible to process transactions within a partition which includes the primary copy or a
majority of sites of all data needed. 3PC is non-blocking except for a total site failure; in
absence of failures, up to 5n messages are exchanged; the time complexity is 5 rounds of

messages. 2PC can tolerate communication failures as well as site failures. 2PC is cheaper
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if time or message complexity is concerned, but it is subject to blocking.

So far there have been few attempts to use the two-phase or the three-phase commitment

protocols for name services.

5.2.4 Sweep

Sweep is used for update propagation of the GNS [Lampson 86]. To be reliable, all replicas
are linked into a virtual ring. Updates are allowed to any available replica. A sweep
updates all replicas. A query result is guaranteed to be good up to the time of the last

completed sweep.

If collecting updates is done in parallel, the time complexity of a successful sweep is
3 rounds of messages; 3n messages are exchanged. The method is not resilient in the
presence of any failures. In addition, maintenance of the virtual ring is subtle. If the ring
is broken due to some failures, a new ring must be reformed by using directory references or
information provided by the administrator. Since the ring determines the current content
of the database, reforming a ring is never done automatically, but must be controlled by
an administrator. There is no guarantee that the current state of the database can be
found. A snapshot always gets back the database state consistent up to the last-sweep-time

together with an arbitrary set of new updates.

5.2.5 The Epidemic Algorithms

In [Demers 87], several randomised algorithms such as Anti-entropy and Rumour monger-
ing for replicated database maintenance are analysed. These algorithms are very simple
and require few guarantees from the underlying communication systems. Provided that
there are no more new updates, the algorithms will bring the database into consistency
eventually, even when there are failures. They generate reasonable traffic for the under-
lying network. These methods have been run with the Xerox Clearinghouse name service

successfully.

5.2.6 Lazy Replication

Many services provided by computers must be highly available. By taking the semantics of
a service into account, implementation constraints on replication can be weakened. Lazy

replication (see client-ordering in[Ladin 90]) allows an update operation to be performed
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in a single replica, and for the effect of the operation to be passed to other replicas asyn-
chronously. The propagation of the effect is carried out by exchanging gossip messages,
which contain the latest updates. The frequency of gossip may vary from one applica-
tion to another. A query comes with a multi-part timestamp which is a combination of
timestamps for each replica. A multi-part timestamp can be used to check if a replica
has the information concerned by a query. Since extra information (i.e. the multi-part
timestamp) is needed for ordering, the algorithm is good provided that the size of such
additional information is small (i.e. there is a modest number of write-replicas) and pro-
vided most operations can take advantage of the laziness (i.e. client-defined ordering is
appropriate). The method appears to be applicable to a wide range of applications, in-
cluding garbage collection of objects in a distributed heap [Ladin 88], locating movable

objects in a distributed system [Hwang 88], and so on.

5.2.7 Summary

The replication control mechanisms reviewed above can be divided into two categories:
those giving immediate consistency, such as the primary site, quorum consensus, commit
protocols and Paxon, are synchronous algorithms; those for long-term consistency, such

as the epidemic algorithms, sweep and lazy replication, are asynchronous ones.

Synchronous methods place restrictions on either query or update operations, or on both,
for maintaining one copy serializability. Although their implementations differ and se-
mantics can be used to release some restrictions under particular circumstances, they are
tightly-coupled and do not scale very well. It is also possible to lose locality of reads.
As discussed in the last section, for a large distributed and replicated naming system,
it is very expensive to run synchronous consistency control protocols; various autonomy

requirements can make such protocols impossible to implement.

On the other hand, provided only with the guarantee that a piece of naming data is good
up to some past time, a client will not get the necessary help if the data fails to work. The
problem with sweep, lazy replication or the epidemic like algorithms is that there is no

way to find out what is wrong until either another sweep is done ! or an unknown time. 2

! Although a client initiated sweep may be allowed, it is expensive to carry it out often. The Sweep
algorithm does not scale well, and updates may be lost too, as mentioned in Section 5.2.

2The epidemic methods imply that the database will become consistent at a future time, which can not

be precisely specified.
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5.3 Semantics of the Name Service

In this section, assumptions about naming system semantics are made. There is always
trade-off between the accuracy of the naming data and its availability. It is common to
see that the naming data is maintained in a loose way; there are a number of good reasons

for doing so:

e The rate of naming data update is slow
¢ The data can be treated as hints, which are explicitly permitted to be wrong

e Most updates are made by system administrators

The first assumption is basically true, but in many cases, the rate of change to the naming
data is not as low as one would expect. For instance, British Telecom makes approximately
5000 updates a week out of 1 million entries in the region containing Cambridge, which
suggests about a 26% annual update rate (according to a BT phone book manager). The
number for some other naming systems is even higher. It is worth mentioning that not all
naming data changes at the same rate. For example, a person’s name may last for decades,
while a process identifier lasts less than a second. Another example is that organisations
will not usually change their names faster than people change their affiliations. People’s

interests in different naming data are also diverse.

The second assumption is also true, providing uses of obsolete naming data can be detected
within a reasonable time, and the cost of recovery from using wrong data is acceptable.
However it is not easy to make such claims for all possible naming applications. For exam-
ple, a very important mail message could be lost due to lazy update propagation, although
in systems such as the mailing system, loose consistency control is commonly seen. As no-
ticed by Needham and Terry [Needham 88, Terry 87|, both detection and recovery require
efforts from outside the naming system. Figure 5.1 shows the recoverability of naming
systems. Therefore, it is worth making a name service offer the most current information

rather than only hints.

The third assumption is nearly true, but sometimes clients are allowed to change their
data registered in a name server, e.g. passwords. It is interesting to notice that the
naming data which may be changed by users is not usually replicated a great deal, while
the naming data which can only be changed by administrators may be heavily replicated.
For example, the global contexts belong to the latter. In some name systems such as the
GNS, there is a similar feature: the demand for replication of those directories on the top

levels of the directory hierarchy is much higher than that of those on the bottom levels. No
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Figure 5.1: Diagram of Recoverability

matter who initiates updates, name services should be able to maintain strong integrity

of the naming data.

Semantic Properties
In order to release some of the constraints on data consistency, name system semantics

should be exploited. A global name service should exhibit the following properties:

e Few conflicts: considering a single naming data entry, there are few conflicts between

queries and updates, as well as among different updates.

o Enormous number of queries: the number of queries made to a name service is much

greater than that of updates.

e Only addition needs validation: validation is necessary only when a new name is to

be added to the naming database to avoid conflicting names.

o Low change rate: although the number of updates made to a naming database is

considerable, it is still less than that in file systems.

e Few constraints: it is good enough if a replicated name service appears to the client

to provide the same observable behaviour as a single copy one.

o Caching hints are acceptable: when detection of invalid data on use is allowed, cached

naming data can be used as hints.

o Restricted availability: most naming data is protected from being made public, less
replication needs to be done for such data. Some naming data serves public interests,
and has to be widely replicated for high availability and reliability; changes to such

data is interdependent.
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e Single-shot transaction: Naming operations are usually constructed as single-shot

transactions. 3

Requirements

Up to now, the semantics of a large name system and various issues on its maintenance
have been discussed. To achieve the design goals of the UNS outlined in Chapter 3, the

mechanism for the UNS maintenance should be:

¢ highly available
e reliable
e scalable

o fault-tolerant

5.4 The Two-class Name Service Infrastructure

In previous sections, different replication algorithms were analysed and the semantics of
naming systems was given. Heavy replication is one way to provide a highly available
name service; it also enhances the fault-tolerance of the service. Caching always proves a
useful method to improve performance; for applications classified by a slow update rate
and frequent queries, such as naming, caching is often used. Much previous work has been
done in these areas, such as those found in [Lampson 86, Terry 87, Birrell 82]. However
little effort has been attempted to allow clients to be able to find the most recent data from
a naming database, when a cache failure (due to stale naming data) is encountered. Strong
integrity of the naming data is not combined with cached information to provide a more
desirable name service. An interesting observation of naming applications is that a client
may like to contact a name service after a cache failure. Providing strong integrity for a
naming database leads the client to find out what went wrong if a piece of data failed to
work because it was obsolete. A large naming system can be implemented without trading
consistency for high performance, which brings the motive to combine the tight replication
control protocols and the loose replication control protocols into a new mechanism - the

two-class name service infrastructure. In this section, the new method is given in detail; in

3 A single-shot transaction is defined in [Birrell 85] as a transaction which is not composed of multiple

client actions.
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the next two sections, methods for the first class and the second class service are explained

separately.

5.4.1 The Computation Model

A commonly used paradigm in constructing distributed systems is the client /server model.
In this model, a server maintains data objects and defines operations which are exported
to clients. Clients invoke these operations to manipulate the data managed by servers.
Communication between servers and clients is carried out by remote procedure calls. A

server may itself be a client of another server.

The computation model makes the following assumptions about system hardware and
effects of failures. The system is globally distributed and consists of a collection of inter-
connected computer communication networks, each of which contains a group of connected
physical machines. Machines and networks are considered as entities of the system. The
word “machine” denotes a server machine or a client machine, which runs a service or an
application accordingly. A group of server machines may provide with clients a service
cooperatively, and in such case, each server machine is called an instance of that service.
Entities of the system may be dispersed all over the world and may belong to different
organisations or individuals who may not trust each other. A machine can fail, but it does

not exhibit Byzantine behaviour. *

The communication network assumed in the thesis may have any kind of topology. Again,
no Byzantine behaviours are under consideration. For instance, the network will not
deliver corrupted messages. Network failures may be losses, or duplication of messages,

network partitions, and delayed or out of order message deliveries.

Every machine has a loosely synchronised clock which is used to measure time intervals

or trigger actions.

5.4.2 The Two-class Name Service Infrastructure

The basic idea of the two-class name service infrastructure, as demonstrated in Figure 5.2,
is that the replicas of a directory are divided into two categories: those on servers running
a tight replication control protocol - the first class servers, are called replicas, which are

used for strong integrity of the naming database, and those on servers running a loose

4 A Byzantine fault is said to occur when a system component delivers a wrong result. The contrast is

with a fault which just causes the affected component to stop. See [Lamport 82, Schlichtin83] for details.
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Figure 5.2: The two-class name service

replication control algorithms - the second class servers, are called read only copies, which
are used for high availability. The infrastructure normally consists of a small number of
first class servers and a large number of secondary servers. The number of each type of
server may vary under different circumstances. In a situation where data is replicated
locally with a reliable underlying system and communication support, it may not need
any secondary servers because running the first class servers is enough. The client actions
which affect the name service may be unpredictable or independent. For instance, a client
changes his password in private, or a server is moved without notifying the rest of the
world. In such a situation, it is desirable not to prevent the client actions from happening,
thus loose replication control or less replication is preferred. There may be an arbitrary

number of caches kept by clients, which may be either applications or other servers.

In order to make the service reliable only the first class servers are allowed to carry out
updates. The second class servers are informed by the first class servers after a successful
update. Among the first class servers, a tight replication control protocol, i.e. the UNS
First Protocol (UFP), is run. Anti-entropy and call-back are run for propagating updates

between the firsts and the seconds.

Besides the two-class service infrastructure, caching is also used. The major difference
between read only copies and caches is that the former are treated as “official copies”,
which are subject to authorised refreshes from time to time; the latter are just normal
caches. Applications may choose from any of the three kinds of data whichever suits them
best. There is a two-way communication between the firsts and the seconds - the firsts use
call-back to push updates to the seconds; the seconds use anti-entropy to poll from the
firsts when necessary. Caching, as in many previous name systems or database systems,
is used to improve performance. A more detailed discussion about caching is given in
Section 5.7 .
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The novel aspects of the infrastructure are: strong integrity of naming data is provided;
availability of the most demanding service operations is high. The client of name service
can find the current data in case of need. The most important fact to note about the two-
class service infrastructure is that it combines tight replication control mechanisms and
loose ones into a new form of service management which cannot be judged on the terms
normally apply to either separate component. The emphasis here is to provide correctness

without compromising high availability.

5.5 The UNS First Protocol (UFP)

The replication control protocol to be discussed in this section is for the UNS first class
service. As indicated in the last section, the first class service is vital for maintaining the
strong integrity of the naming data. Two major requirements to the UFP are reliability
and fault tolerance. Thus, the probability of information loss and service disruption due
to communication or site failures should be minimised. In order to satisfy the two require-
ments, the UFP protocol is developed to coordinate the first class servers for maintaining
one copy serialisability (1SR) [Bernstein 87] in an efficient and cost-effective way. Quorum
consensus is integrated in the UFP so that a few sites or communication failures will not

stop the service.

The UFP is influenced by the Paxon protocols [Lamport 89] which are described as if
they were developed originally by an ancient civilisation on the island of Paxos for their
parliament passing decrees of the land. They ensured that the parliament functioned
properly even in case that some of the legislators walked in or out of the chamber during
the proceedings. No matter what happened, consistency of the ledgers, which recorded
the decrees passed, was maintained. In terms of distributed computing, the legislators can
be seen as the processors, the ledgers as the replicated data and the legislator’s walking

in or out of the chamber as the processor’s coming up or going down.

In the rest of this section, the Paxon Synod protocol is outlined, which is followed by
the introduction of the UFP. The UFP is then described in detail with some examples.
Finally, possible elaborations to the UFP are discussed.

5.5.1 The Paxon Protocols

The Paxon Synod protocol was used by the Paxons for passing a single decree. Each Paxon

legislator maintained a ledger in which he recorded the numbered sequence of decrees that




CHAPTER 5. MAINTENANCE OF THE NAMING DATABASE 60

were passed. Requirements on the protocol included consistency of the ledgers, and the

decrees were eventually passed and recorded in the ledgers.

The procedure of passing a decree was called a ballot. One of the legislators had a special
role to play during a ballot, i.e. as the president. The president started a ballot by
assigning a unique number to it, and then asked the other legislators inside the chamber
to see whether he could start the new ballot. The legislator receiving the request might
answer “yes” or simply ignore the request. Once the president got enough positive replies
to his request, he proposed the decree to be passed and sent it to every legislator in the
chamber. On receiving the decree, a legislator might vote for it and inform the president
or again ignore it. If a majority of the legislators voted for the decree, the president
would tell everyone in the chamber to write it down in their ledgers. Once informed, the
legislator would write the decree in his ledger. Having missed a passed decree, a legislator
would find his ledger out of date once he learned the number of the current decree being
voted. He could then bring his ledger up to date by copying from other ledgers which had

a larger decree number.

There are three steps in a ballot: first, to choose a decree; second, to vote for the decree
if chosen; third, to record the decree in the ledgers if it was passed. In the first step,
the president assigned a number which was bigger than what he ever tried before. The
number was made unique: this could be done by remembering what he had previously
initiated with a note in his ledger. To avoid a different president initiating the same
ballot number, an obvious way is to associate the name of the president with an integer
and use lexicographical ordering. The voting rule is simple. On receiving the president’s
first request, a legislator checked his own note to see whether the ballot number was big
enough, if so, he replied with the decree he had voted for last time. Otherwise he did
not do anything. Similarly, a legislator might vote for the decree chosen by the president

before the second step or do nothing.

Any legislator might walk in or out of the chamber during a ballot. If a legislator left the
chamber, the president would get neither a request passed to him nor a reply from him. If
the president left the chamber before a ballot finished, a new president should be elected
for initiating the ballots. In the beginning of a ballot, one of the legislators in the chamber

was elected as the president.

In [Lamport 89], Lamport first described and proved the correctness of the Paxon Synod
protocol. He then derived a multi-decree protocol, which can perform multiple updates.
The Paxon protocols may be applied to distributed computing systems. For example, the

multi-decree protocol can be used for making multiple updates to the replicated data. A
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more formal description of the Paxon Synod protocol is given in Appendix A; see also

[Lamport 89] for further details of other Paxon protocols.

In summary, the Paxon protocols work under the assumption that the legislators (pro-
cessors) are fail-stop. The protocols therefore are cheaper and simpler than the protocols
which are designed to tolerate arbitrary, malicious failures. Consistency is guaranteed by
using a quorum. If a president gets elected and every legislator in the chamber works
promptly, progress is ensured. Most importantly, the protocol does not depend upon any
underlying distributed transaction support. These properties make the Paxon protocol
interesting to the UNS.

5.5.2 Introduction to the UFP

Although Lamport indicated that the Paxon multi-decree protocol could be used by a
name service, no detail was given in [Lamport 89]. The UFP protocol to be introduced in
this section is inspired by the Paxon multi-decree protocol, which retains the advantages of
the Paxon protocol while making further use of the naming semantics to improve efficiency.
There is no election algorithm needed by the UFP for simplicity. Once integrated with
the two-class name service infrastructure, the UFP protocol ensures the integrity of the

naming data.

The UFP has the same computation model as described in Section 5.4. The unit of
replication is commonly a directory or an index, although fine-granularity replication can
also be used with the UFP if required. For the data which is likely to be widely replicated,
the two-class name service infrastructure provides a framework to place the replicas of
the data on the first class or the second class service. The novel aspect of the UFP is
that it constructs a reliable and fault-tolerant first class service at a reasonable cost. No
underlying multi-site transaction support is needed, so that the UFP is less expensive than
other quorum-based approaches such as weighted voting [Gifford 79]. Elaborations can be

made to reduce the cost further.

There are three phases in the UFP: validation, preparation and commitment. The protocol
is for synchronisation of the first class servers. Synchronisation is an action which makes
replicas of a multi-copy directory or index reflect the client updates in the same order. One
of the servers involved in a synchronisation serves as the coordinator, which is responsible
to start and organise the synchronisation; the other servers are participants. A client
request can be sent to any of the servers. Thus any server can start a synchronisation.

On receiving a request, the server becomes the coordinator of a new synchronisation and
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enters the validation phase. The coordinator commences by sending a message to every
server keeping the replica to check whether it has the current data. If a quorum of the
participants agree on the data and vote for it, the request can then be chosen. The
protocol goes on to the preparation phase where chosen request is sent to every server in
the quorum. If again a quorum is formed, the client request will be implemented in the

commitment phase.

Each participant runs in either one of the two modes: normal mode or recovery mode. A
server usually stays in the normal mode unless inconsistency has been discovered. If a

synchronisation succeeds, an ack message is sent to the client by the service.

Before the UFP is given in detail, the following definitions are made:

The Replica Set

In the UNS, the unit of replication is either a directory or a global index.’ A directory
may be replicated on several servers; each server stores a replica. Let d denote a replicated
directory, r denote a replica, and S denote the set of all the servers comprising the UNS
service. Let Ry denote a replica set, which is defied as Ry = {r |r is a replica of d }. Let
Sq denote the name server group (NSG) in which each server is a physical storage site for
a replica of d,i.e. Sy = {s|3r € Ry A 7Ons is true}, where 7Ons is true means r
is stored on the server s. Individual replicas are not normally visible to the client. All

servers in the same NSG offer the service cooperatively.

For example, in Figure 5.3, there are three replicas A, B and C for d. Thus Rg = { A,
B, C}, and Sg = { S4, SB, Sc }, where the server S, stores replica A, Sp stores B and
so forth. The naming database is partitioned and distributed among the UNS servers so

that there are many NSGs for different data partitions.

The System Architecture, the Server Structure and the TPR

The UNS first class service is composed of a number of servers. The clients make requests
via the User Agent (UA) which contacts the servers through the UNS Server Interface. In
Figure 5.3, the system architecture as well as the server structure is shown. Following the
example given above, a name server group S; is also illustrated. All the detail of replication
and the protocol are transparent to the client. Each server consists of two functional parts:

one performs the coordination function, the other performs the participation function.

5 A smaller replication unit, called reference is introduced in Chapter 6.
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Every server maintains a Table of Pending Requests in its stable storage besides the data
replica. The TPR on a server s contains a Psid[s] which is the identifier of the last
synchronisation that s voted, or —oo if s never voted; a Nsid[s] is the identifier of the last
synchronisation in which s promised to participate, or —oo if s has never promised any
and a PrevR[s] which contains the previous requests (which are time-stamped) that the

server has voted for.

In addition, a unique identifier sid is assigned to each synchronisation when it is attempted
by the coordinator. A sid can be generate in many ways, e.g. by combining an integer
with a server identifier which is unique. For instance, A server with identifier #12 may
generate an sid (1024, #12). The sid is totally ordered, i.e. (1024, #1) > (1023, #2) >
(1023, #1). ¢

A sample TPR is shown in Figure 5.4, where the last synchronisation that the server voted
for has an sid (1023, #1). The current synchronisation that the server is involved has an
sid (1024, #1). The last request that the server voted for is “123 : modify(UDI, vo, vn)”,

where 123 is the time-stamp.

5.5.3 The Protocol

A full description of the UFP is given below. Some of the actions which change the states
or the data replica are single-site atomic actions. For instance, as a result of receiving a
NeztS message, p will change its TPR if certain conditions are met; this should be done
atomically. The coordinator ¢ executes each action sequentially, so does the participant
p. The RPC semantics is assumed but error handling is omitted. For example, if ¢ does
not get a reply to the message NeztS, it will not continue to execute ¢3. If a timeout is

reported, ¢ may try cl and c2 again.

In the UFP, each client request is associated with a time-stamp issued by a server. A
time-stamp used by the UFP is a logical time-stamp, i.e. an integer. A data replica on
server s has a version number - ver[s], which equals the time-stamp of the latest update
request. Besides the data replica, every server s running the UFP should maintain the

following state variables in a stable storage:

o LastTried[s] - the sid of the last synchronisation that s tried to begin, or —oo if s

never started any synchronisation. There is an increase operation that returns a

8Note that the first part of the sid is compared first. Only if the result of the comparison is equal, the
server identifiers are compared. This will prevent a server from always generating bigger sid than another

server because its identifier is bigger.
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sid greater than the input one.

e TPR[s] - the Table of Pending Requests defined in the last section.
There are also temporal state variables kept or used by s:

o PrevVotes[s] - the set of votes received in LastV ote message for the current syn-

chronisation.
o quorum[s] - the set of servers forming the quorum for the current synchronisation.

e voters[s] - the set of quorum members from which s has received Voted message for

the current synchronisation.

e 0p[s] - the request being synchronised, that contains the request in op[s].op and the

time-stamp of the request in op[s].tm.

e v - the message sent by s on receiving the LastV oted message. v has three parts:
v.op = {v.op.tm,v.op.op} for the request that s voted last time, v.sid for the sid of
the last synchronisation, and v.vote for an OK/REJ message or the current version

number of s.
o req - the request being synchronised.

e b, nsid and psid - variables of the sid type.

Phase 1 :
Coordinator c’s actions
cl. Try To Start A Synchronisation
LastTried[c] «— increase(LastTriedc]);
PrevVotes[c] « 0;

c2. Send NextS Message
Send a NexztS(LastTried[c],ver[c]) to every p € Sg;

Participant p’s actions
pl. Receive NeztS(b,ver) Message
if ver < ver[p]
then v.vote — ver[pl;
go to p2;
else if ver > ver[p]
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then p enters recovery mode; exit;
if b > Nsid[p]
then Nsid[p] «— b;
v.wote «— OK;

else v.vote — REJ;

p2. Send LastVote Message
v.op « PrevR[p); v.sid — Psid[p];
Send LastVote(N sid[p],v) to ¢;

Coordinator ¢’s action
c3. Receive LastVote(nsid,v) Message
if nsid = LastTried[c] and v.vote = OK
then PrevVotes[c] «— PrevVotes[c]U {v};
else if v.vote #0K or REJ

enters recovery mode; exit;

Coordinator c¢’s actions
c4. Start Polling Majority Set @
if @ C {p|v from p has been merged into PrevVotes[c]}% Q stands for the quorum%
then voters[c] — 0;
req — mazimum(PrevVotes(c]);
%the mazrimum operation returns the request having the maximum sid.%
if req.std # —oo and req.op # 0
then op[c] — req.op;
else op[c].op — any client request;
oplc].tm « increase(ver[c]);

else exit;

Phase 2 :
Coordinator ¢’s action
c5. Send BeginS Message
Send BeginS(LastTried(c], op|c]) message to every p € @;

Participant p’s actions
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p3. Receive BeginS(b,op) Message
if b = Nsid[p] and b > Pstd[p]
then Psid[p] « b;
PrevR[p] < op;

p4. Send Voted Message
if Psid[p] # —o0
then Send Voted(Psid[p], p) message to c;

Coordinator c¢’s action
c6. Receive Voted(psid,p) Message

if psid = LastTried[c]
then voters[c] «— wvoters[c]U {p};

Phase 3 :
Coordinator c¢’s action
c¢7. Send Commit Message
if @ C voters]c]
then Send Commit(op|[c]) message to every p € Q;

Participant p’s action
p5. Receive Commit(op) Message
Apply op.op on p’s replica; ver[p] — op.tm;

erase the corresponding entries for op from TPR[p];

Now we look at how the UFP works through the three phases.

Phasel:Validation The first phase is the validation phase, in which the version number
of each replica is checked by exchanging the NexztS(b,ver) message between the
coordinator and the participants, where ver is the coordinator’s version number,
and b is the unique identifier of the synchronisation to be started. On receiving such
a message, a participant compares ver with its own. If ver is less, it informs the
coordinator by a reply message which will cause the coordinator to enter the recovery
mode. If ver is greater, the participant enters the recovery mode. If the version
numbers are equal, the participant sends an OK message to the coordinator. When
the coordinator gets the quorum needed, it chooses the request to be synchronised.

The request is chosen in such a way that if v.op is the request having the biggest
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sid, the coordinator must choose it. Otherwise the coordinator is free to choose any
client request. The UFP will not enter the second phase if the coordinator can not

get enough positive responses or enters the recovery mode.

Phase2:Preparation The second phase is the preparation phase, where the chosen client
request is sent to every server having voted in the first phase. The coordinator then
waits for replies. If a quorum of participants vote for the request, the UFP goes on to
the commitment phase. A quorum can not be achieved if there are not enough active
servers, or another coordinator had started a higher-numbered synchronisation, or
simply because the communication is slow or has failed. In any of those cases the
client may get a timeout report. It is up to the client to decide whether to retry when
no ack has been received from the service. The UFP guarantees that all operations
carried out are serialisable, but there is no global ordering for requests. © The UFP
ensures that every active server processes the requests which it receives in the same

relative order.

Phase3:Commitment The third phase is the commitment phase, where a request having
a quorum is finally made permanent on each replica. A request is committed if and
only if it has been recorded by a quorum number of TPRs. In contrast to the Paxon
protocol, the message is only sent to members of the quorum by the UFP, otherwise

gaps may be left on replicas, making the version number not match the current state.

An Example

In Figure 5.5, a synchronisation T is shown phase by phase. The replica set Ry = {A,B,
C }; the NSG or the server set Sg = { S4, SB, S¢ }; The number in the figure indicates
the order in which the messages are exchanged. Server S4 becomes the coordinator after
receiving a client request. S4 Starts a synchronisation T by sending out the NextS(b, ver)

message. The messages are exchanged as follows:

1. 5S4 increase its LastTried[S 4] and sends NextS(LastTried[S 4], ver[S4]) to Sp and
Sc.

2. Suppose that all the three servers have fresh replicas. On receiving NextS(b,ver),
Sp sets Nsid[Sp] to b if b is greater than Nsid[Sp], and then sends a
LastVote(Nsid[SB],v) to S4. v contains the vote OK and the previous requests
etc from the TPR of Sg. Similarly, S¢ also sets N sid[Sc] to b and sends a LastV ote

message to S4.

"Global ordering is the effort to order the requests by the time they are made.
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Figure 5.5: An Example of the UFP

3. S4 gets a quorum and chooses a request in the following way. For every v received
from Sg and S¢, if v.sid is the biggest and v.op # 0, chooses v.op, otherwise chooses
any client request. S4 then sends BeginS(LastTried[S4],o0p[S4]) to Sp and Sc.
op[S4] contains the request that S4 has chosen above.

Note that a failure (partition) now occurs which cuts the communication to/from

Sc.

4. On receiving the BeginS(b,op) message, Sp sets Psid[Sg] to b and PrevR[SB] to
op. Sp then sends Voted(Psid[SB], SB) to S4.

5. After getting the Voted(b,Sp), a quorum is again formed by Ss. S4 sends
Commit(op[S4]) to Sp for LastTried[S4] = b.

6. The request is carried out by S4 and Sp. The corresponding entries for the request

is erased from their TPRs. The client is informed by S4.
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After the synchronisation has finished, the request is made permanent on the replica of S4
and Sp. The version number for Sc’s replica is behind due to the partition. In the end of
the next section, how S¢ will catch up will be explained. Note if a quorum needed can not

be formed for a long time, a timeout will occur and S, will restart the synchronisation.

5.5.4 The Progress Conditions

The progress predicate of the UFP, denoted by P, is a conjunction of the condition P1 -
P5. The algorithm maintains consistency, but in order to ensure progress, the following

conditions must be met:

P1 Operations on servers should be completed within #,, seconds

P2 Communications between machines should arrive in ¢, seconds

P3 Let Q be the set which contains a quorum needed for an operation
P4 At any time there is only one synchronisation in progress

P5 No one rejoins or leaves Q within 9(top + tc) &

If a server s, which considers itself the coordinator, initiates a synchronisation request
when a majority set of servers are active, then s can expect to pick a client’s request within
2(top +1t.) seconds, and to send Commit message out within another 2(t,, +¢c) seconds. If
s cannot execute the steps within the time, then either some servers or connections failed
after s initiated the synchronisation, or a larger-numbered synchronisation had previously
been started by another coordinator. To handle the latter possibility, s has to learn about
the larger number in order to start again. In other words, s will be required to restart a
synchronisation if and only if: (1) it can not enter the second phase or the third phase of
the protocol within a fixed time, or (2) it learns that another coordinator has started a
higher-numbered synchronisation. If no server comes back up or goes down when s and a
majority set of servers are executing the protocol, an operation will be committed and its

results written on every replica in Q within 9(,, + t.) seconds.

5.5.5 Elaborations of the UFP

The UFP allows two or more servers to initiate synchronisations simultaneously, since

the chance for more than one UNS server concurrently initiating requests against the

8The time complexity can be reduced when the UFP is optimised later.
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same data is very small. Even if there are a number of synchronisations for the same
data at a time, only the one with the highest synchronisation identifier will win. So no
confusion results. A timeout will occur if within some fixed time a coordinator can not
enter the second or the third phase due to the start of another synchronisation. The
Paxon single-president strategy has several drawbacks: first, the president is likely to be
overloaded because all client requests have to be passed to him; second, it is less robust
in respect of failures; third, it has a less degree of concurrency than the multi-president
(multi-coordinator) strategy. Also, a complex election method has to be employed. On
the other hand, one drawback with the multi-coordinator strategy is that the progress may
be prevented if synchronisations for the same data are started too frequently. However,
the frequency of the requests made to the first class service is expected to be low, because
updates are far less than queries. Note that having multiple coordinators will not cause

inconsistency, since the safety conditions still hold. 9

As regards the cost of the UFP, a synchronisation involves five rounds of message exchanges
and 5N messages if there are N participants. With the single-president method, after
a president is elected, the protocol has three message delays and 3N messages. The
communication cost can be further reduced if a commit message is sent together with the
BeginS message of the next synchronisation, i.e. only 2N messages are exchanged, and the
time complexity is 2 rounds of messages. However, getting a president elected can take
a long time and great care must be taken when the current president stops functioning
and a new president has to be chosen [Mann 89]. There are three reasons that the multi-
coordinator method is used by the UNS: firstly, the UNS can afford the cost of having
multiple coordinators since the frequency of requests is expected to be low; secondly, it is
easier to implement since no complex algorithm is needed to get a president elected from

time to time; thirdly, client requests to the UNS are mostly single-shot transactions.

After a request has been committed, it is not necessary to go through a synchronisation
for it again. After the commitment, the corresponding TPR entry for the request can
be replaced by the forthcoming requests, so that the TPR will not get arbitrarily long.
However, the information in the TPR can not be thrown away before the request has been
committed. Otherwise inconsistency may be caused. For instance, suppose that less than
a majority of replicas have recorded a committed request numbered 123, and some TPR
entries for the request are erased. Later a new coordinator got a quorum, which did not
include any one knowing the request 123, and got a different request also numbered 123
committed. When the two groups of servers meet together, inconsistency will be found in

the replicas. In order to avoid the problem, every server keeps the TPR entry until the

®See [Lamport 89] for proof of consistency.
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request has been recorded on its replica. The predicate I below is therefore always true.

TPR(s) denotes a set of the current states kept by a server s, such that

TPR(s)= {e | € contains the states of a pending request
V e contains the states of a committed request
Veis}.

Let Q be the quorum needed to carry out a synchronisation. A replica r stored by a server

s is defined as a data set: D,(s) = {u| v is a committed request}

Predicate I is left true after a synchronisation.

I : A request uis committed => { Vs (s € QA(({u} N Dy(s) # B) V ({u} N TPR(s) #
o))}

Proof:

Suppose u is committed; s is a member of Q which voted for u during the synchronisation.
u is reflected by TPR(s) only after a BeginS(sid, u) message is received by s during the
2nd phase of the UFP. During the 3rd phase of the protocol, on receiving a Commit
message, s adds u to D,(s), and then erases u from TPR(s); the above two actions are
made atomic. The coordinator only sends Commit to those belong to Q during the 3rd
phase of the UFP. Therefore, if there was a s in Q such that: u was neither recorded by
TPR(s) nor written on D,(s), then s did not see either BeginS(sid,u) or Commit, that is
contradictory to the assumptions that s is in Q and u is committed. Thus I is left true

after the synchronisation. O

Since I is always true, a coordinator will be able to learn any committed request from a
server having voted for it. Following up the example given in section 5.5.3, the server S¢
failed during the second UFP phase. Suppose Sc¢ resumes communication with the other
two servers and receives a client request. S¢ begins a synchronisation and will enter the
recovery mode during the first phase because its version number is behind. S¢ can learn

the missing requests from either S4 or Sp (see also next section for recovery from failures).

Finally, a fine-grain replication can be used to allow higher concurrency. For instance,
different requests to different entries in a directory may be accepted at the same time,
which is impossible if the directory has only one version number. If two updates to the

same entry are issued concurrently, the one with a larger time-stamp always wins.
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5.5.6 Discussions
Local Atomic Action

Although no multi-site transaction (atomic action [Lampson 81]) support is needed by
the UFP, single-site (local) atomic action must be used. An action can be described by
operations taken by a server and the results of them. For example, a participant’s action
upon receiving a BeginS message includes receiving the message, comparing variables,
and setting variables. The details of implementing a local atomic action mechanism are

outside the range of this research.

Resolution of Conflicts

Despite the hierarchical naming used by the UNS, it is possible for conflict names to exist.

For example, here are two requests received by a server:

1234: Parsley is a laser printer

1236: Parsley is a line printer

Users would get confused if the above two requests are both accepted by a local name
server. To avoid getting conflicts, the following observation is useful: if request v and v’
were committed, sid was associated with u, sid with u', and sid > sid’, then the coor-
dinator must have learned u’ before it chose u.1® A coordinator can find out a committed
request either from a TPR or a data replica, since I is always true. Therefore, for the
addition operation, if the name has already existed, the coordinator can find it out and

will refuse any request to add the same name again.

Any conflict will be detected during the first phase of the protocol. For instance, the
coordinator for request 1236 sends a NextS(sid,1236) to every other server in the NSG.
If an earlier request with time-stamp 1234 is committed, the coordinator should be able
to learn it (because request 1234 and 1236 share the same key, i.e. “Parsley”, in the add
operation), or the pending request 1234 from at least one participant. If the coordinator
has neither leant about request 1234 nor its outcome, it must have an older version of
data, or request 1234 has never been committed. In the later case, request 1236 can be
picked up for synchronisation. In the former case, the coordinator enters the recovery

mode for catching up.

1°The decree-ordering property is described in [Lamport 89].
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For update operations, however, it always makes sense to apply an update to the UNS
database. A value of a data entry is initially empty and then determined by a sequence of

update operations. The set of updates that have been applied defines the state uniquely.

Read Only Operations

In the UFP, a c option of query (slow-read) is designated to get the most recent data.
Three methods may be used to implement such a query. In the first thought, a query
with the c option means to go through a synchronisation. Alternatively, a time-stamp
can be associated with the query. Given the time-stamp, a server can decide whether
the data is more recent or not. The third method is to appoint a specialist-server as the
authority to answer any enquiries made to a particular portion of data. None of these
methods seem satisfactory in regard to the naming semantics. It is very expensive to go
through a synchronisation each time an enquiry is made. To ask the client specifying
time-stamps when making an enquiry does not seem suitable either because the client
usually does not remember the time-stamps. The specialist-server strategy is also not
very interesting because it is in fact a primary-copy method, which is less robust than the

quorum consensus methods.

It is possible to learn the most recent data by reading a quorum, as seen in many quorum
consensus protocols such as weighted voting [Gifford 79]. Reading a quorum requires only
two round of message exchanges. Although the Paxon protocol is quorum consensus, it is
tricky to read a quorum because there is no guarantee that the current data can be found.
11 This can be seen as one of the major difference of the Paxon protocol from previous

quorum consensus methods.

As mentioned earlier, the UFP uses quorum for fault tolerance and the flexibility of ad-
justing the votes for read or write among the replicas. The UFP is developed to get the
current data through a quorum read. The pseudo code for this is shown in Figure 5.6,
where the request u is defined as pending for it appears on less than a quorum number
of TPRs, i.e. it has yet to be committed. This could be a result of a partition which
prevented the synchronisation from completing the second phase. If a server s receives an
enquiry at the moment, and becomes the coordinator, s may learn about u or not in the
end of the first phase, because u appears on less than the quorum number of TPRs. After
the first round of message exchange, if s has the current version number and a quorum, it

checks the votes received. If s learns about u and its version number is smaller than u’s

11n the Paxon protocol, it is possible that a passed decree was only reflected on one or two ledgers but

not all of them in the quorum.
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// Coordinator’s code for slow read
char* query(UID key, char opt = ¢)
{ // in phase:1l
... /] The server sends NextS to the participants and waits for replies
if (ver is current && there is a quorum) // ver contains the version number
if (u is chosen from the participant’s votes)
if (key == u.key && u.tm > ver )
// ukey, u.tm extracts the key or time-stamp item respectively from u
enter phase:2;
else return(-lookup(key));
else
return(_lookup(key));
else enter recovery mode or re-try;
// in phase:2 ~ Phase:2 omitted

}

Figure 5.6: Slow Read Operation

time-stamp, and also the enquiry concerns u, u should be synchronised before s answers
the enquiry. If the enquiry does not concern u, the enquiry is answered by s through a
local lookup, i.e. Jookup(). If the query concerns u but » has smaller time-stamp, u is
ignored (u will be erased from the TPR later) and the enquiry is answered by s. If s is
out of date, it enters the recovery mode. If there is not a quorum during the first phase,

s can re-try the request later.

In summary, a query with the ¢ option will always return the most recent data. It does not
enter the second and the third phases unless a pending request with a time-stamp larger
than the current version number is found. Figure 5.6 shows the code of the slow-read
operation with one pending request. If there are more pending requests, the algorithm is

very much the same except more comparisons are needed.

In addition, most enquiries are made to the secondary copies as discussed later in this
chapter, so the number of enquiries to the first class service is much less than that a
traditional name server would expect. Usually, the first class service will call back the
secondary one to propagate the recent updates made. In case this fails, a secondary server
may consider its copy suspicious, in which case it makes a query with option ¢ to the first

class service in order to refresh its own copy.
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Add Operation

The add operation is more complex in comparison with the others because it needs val-
idation. As discussed earlier in this section, the UFP has the property for sorting out
conflicts. The first phase for the add operation can be implemented in the same way as
the slow-read operation, except that it checks with the local lookup operation whether the
name to be added exists or not. Once the validation is done, the rest of implementing the
add operation has no more difference from that of other operations. If the name already
exists, the error NameAlreadyFExzist is reported and the process is aborted. If there is an
add operation started earlier, which is pending and conflicts with the current one, the
UFP rejects the current request. However, it is possible that a client making a request
later gets its name added while the earlier one is aborted, because there were not a quorum
for it and it is not learned by the current coordinator. The UFP only guarantees that no

conflict exists, but does not guarantee to process them in the global order.

Recovery From Failures

As mentioned before, a UNS first class server runs in one of the two modes: normal mode
or recovery mode. After receiving a NextS message from the coordinator, a participant can
decide independently whether its replica is stale or not. If the participant’s version number
is smaller, it enters the recovery mode. If the participant has a bigger version number,
it will send a reply message containing its version number. The message will cause the
coordinator to enter the recovery mode. The major purpose of the recovery mode is for
a server which is just back from a crash or a partition to be able to catch up with the

current version. The methods for recovery are well developed, such as the following:

o full-copy
In recovery, a full replica is copied to replace the old one. The full-copy recovery is
simple to implement, but if the size of a replica is too big, it will be slow, especially

when remote data transfer is involved.

¢ logging and check-pointing
In regard to this sort of method, a log is maintained by each replica in a stable
storage, which contains the recent updates that have been committed. On recovery,
only the log is replayed rather than the full copy, so it is more efficient than the
full-copy method. The log should be kept in a way that allows the updates to be
applied to the obsolete replica. Check-pointing must be employed since a log can

not be arbitrarily long. This dissertation does not address this kind of method.
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e partial copy
This method copies only the part of data that is different from the current version.
If fine-granularity is used and time-stamp is associated with each data unit, the

method is better than the full-copy provided that the comparison is fast.

Recovery can be carried out in background and only after it finishes, a server can run in

the normal mode. The current version of data replica can be found by a slow read.

Maintaining the Replica Set

Every member in the replica set of a directory must know how to contact the others. This
can be done by storing a list of server names on each replica. A replica set is subject to
change. For instance, a replica is added or removed to or from a replica set. In Chapter 6,

how to maintain information for a replica set will be discussed.

Properties of the Protocol

In summary, the UFP protocol has the following properties:

e optimistic concurrency control can be used;
Updates are always allowed except for addition. In case a new name is to be added,
possible conflicts should be resolved by the UFP so that only one of the names is

accepted.

e granularity of concurrent control may be chosen;
The unit of replication control may be a whole directory or a portion of data within

a directory.
e no underlying distributed transaction support is needed;

e the cost is less expensive than that of a three-phase commitment protocol, but has

similar properties, e.g. fault-tolerance is kept;
e most reads are less expensive;
e quorum consensus can be combined with the algorithm;

e one copy serialisability is maintained.
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5.5.7 Related Work

In [Ladin 90], three kinds of ordering are provided: client-ordering, server-ordering and
global-ordering. With the client-ordering, updates and the propagation of their effects are
done asynchronisely. The server-ordering ensures that the update operations are carried
out in the same order at all servers, and the global-ordering guarantees “immediate”
installation of the update operations with respect to all other operations. The UNS can
not take advantage of the client-ordering for the update operations, because it is very
difficult to make gossip schemes reliable for large and heavily replicated naming systems.
The server-ordering and the global-ordering provide the same guarantee as the UFP, but
slow down queries and add more complexity to the system, since the former requires an
extra view change method [El-Abbadi 85, El-Abbadi 86], and later uses the three-phase
commitment. When in process, the global-ordering also blocks all other operations. The
goal of the UNS is different however, it does not prevent clients from seeing temporary
inconsistency. It is up to the client to decide whether a fast-read is acceptable or not. If
a client does have a bad experience because of using inaccurate data, the UFP can help

by means of a slow-read operation.

In contrast with the UFP, other voting schemes such as the one used by some file sys-
tems [Gifford 79, Bloch 82] rely on an underlying atomic action mechanism, which adds

considerable overhead to the consistency control protocol and also reduces efficiency.

The UFP has some advantages over the well-known commit protocols, namely the two-
phase and the three-phase commitment. The two-phase commitment is less fault-tolerant
and less robust than the UFP, for instance, it occasionally blocks. The three-phase com-
mitment is free from blocking, but more expensive and less flexible than the UFP. For each
transaction, there are 5 rounds message exchanges with the three-phase commitment. Af-
ter optimisation, the UFP can be fulfilled in three message delays. Thus the UFP is less
expensive and equally robust in respect to the three-phase commitment. Elaborations are

made to the UFP to obtain more efficiency and robustness.

In the UFP, updates are only allowed at the first class service. However, availability and
performance of lookup operations are improved by introducing the second class servers,
which keep read-only copies of the data stored by the corresponding first class servers.
When there are no failures, the load of the first class servers is mainly from update
requests in addition to enquiries from special applications. When there are failures, such
that some updates are not seen by some of the first class or the second class servers, a slow
read to the first class service is required to get the accurate naming data. A UFP slow read

will return to the client the most current data in question. When the first class service
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can not be accessed by clients due to failures (network partitions or server crashes), no
more updates can be carried out by the service and the slow read also becomes impossible.
However, it is possible that some updates made successfully just before the cut-off have
yet to be reflected on the secondary copies which cannot contact the first class service, in
this case slow reads are delayed. Soon after the partitions rejoin each other, or the first
class service comes back up, a slow read or update can be carried out again and the result

is spread to the second class servers.

Client enquiries are not directed to the first class service except when specified. Temporary
inconsistency between the first class service and the second class service will not be noticed
by most of the clients. However a few clients may notice the inconsistency if a slow read is
not enforced. For example, the client who initiated the update makes a follow-up enquiry,
which is received by a secondary server that has not been informed about the update.
This seems acceptable under most naming semantics. Should different applications be

considered, a suitable query strategy can always be chosen.

5.6 The Protocol For Update Propagation

Experience with Grapevine has shown that a relaxed form of consistency is very useful in
practice [Birrell 82, Schroeder 84] although update propagation delays are sometimes sur-
prising. As mentioned in previous sections, when a naming database is replicated at many
sites and the number of sites grows, maintaining mutual consistency for update operations
becomes a significant problem. A two-class name service infrastructure is introduced to
tackle the problem by maintaining strict consistency among the first class servers, and
loose consistency among the secondary servers. The protocol for the first class servers
has been developed in Section 5.5. This section mainly concerns the update propagation
mechanism to be used by the secondary servers. Several techniques have been developed
such as the sweep algorithm [Lampson 86], lazy replication [Ladin 90] and the epidemic
algorithms [Demers 87]. This section explains that the asynchronous algorithms are com-
patible with the two-class name service infrastructure. Some implementation issues are

also discussed.

5.6.1 Using Asynchronous Methods

The replication control problem encountered by the UNS is complicated by the require-
ment of large scale, high availability and autonomy. It is very difficult for any single

replication control mechanism, either synchronous or asynchronous, to meet the demands.
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The problem with the synchronous methods is that it is extremely difficult to implement a
tight-coupled replication mechanism which scales well and allows autonomy. On the other
hand, none of the asynchronous methods reviewed in Section 5.2 has the ability to resolve
the inconsistency caused by failures. The two-class name service infrastructure is therefore
introduced to combine different replication control mechanisms. As analysed in Section 3.2,
the asynchronous replication control methods are suitable to applications that require high
performance, high availability and autonomy. The three methods seen in Section 5.2 have
been implemented by large name services such as the DECdns [Martin 89], the Clear-
inghouse at Xerox [Demers 87], and a number of services at MIT [Ladin 88, Hwang 88].
Both sweep and gossip require that a replica know all other replicas. It is almost impossi-
ble to get complete knowledge of others in a vast, distributed and mistrusting computing
environment. The experience with the Clearinghouse algorithm shows that random propa-
gation converges fast while causing less traffic on the communication network and requiring
few extra data structures [Demers 87]. The epidemic algorithms are the least expensive
and easiest to implement of the three. Previous mechanisms for maintaining replicated
database depend on various guarantees from the underlying communication protocols or
maintaining consistent distributed control structures. For instance, the QUIPU directory
service relies on a reliable multicast support for propagating updates [Kille 89]. In Lamp-
son’s sweep, the pointers must form a ring. The epidemic algorithms seem the best choice

for the UNS second class service.

When a secondary copy is created, it is registered with a first class server so that updates
can be propagated to it. Each first class server can look after a number of secondary copies;
the first class server and the corresponding second class servers form a server group called a
cluster. A replicated directory object consists of several clusters. The first class servers call
back their clusters to push updates ; no reliable message delivery is required because only
loose consistency has to be achieved. It is possible that during the propagation of updates,
some failures occur so that some secondary copies are missed. A randomised anti-entropy

can be used among secondary copies for detecting inconsistency and converging.

5.6.2 A Few Implementation Issues
Version Numbers

In the last section, the compatibility of the epidemic algorithms with a synchronous repli-
cation control method has been investigated. To implement the update propagation algo-

rithm, each copy should be tagged with a version number which helps to detect inconsis-




CHAPTER 5. MAINTENANCE OF THE NAMING DATABASE 81

tency and indicates the necessity of accessing the first class service for accurate data. For
instance, clients can learn how recent the data is if given a piece of data with a time-stamp.
The version number is advanced when the first class service has carried out the updates

successfully.

Push vs. Pull

In the UNS, push means the firsts call back the seconds if there is any update made
recently; pull means the seconds contact the firsts periodically to refresh their read-only
copies. Both methods have advantages and disadvantages. If the data change rate is low,
pulling indiscriminatingly from the first class servers by the second class ones is likely to
generate heavy traffic on the communication links. Call-back is used by the firsts instead
to push updates to the secondary servers. There seems no way to prevent some copies
from not seeing the updates sent for some reasons, namely site or communication failures.
What the firsts can do is to keep trying in the case of exceptions from RPC calls. However,
handling failure of call-back in a large distributed system could occasionally be well beyond
the firsts’ ability. Alternatively, the firsts can remember recent updates for a while and
combine those updates into the same message containing the new updates, expecting those
which missed something before to receive them. No matter which method is used, there is
no guarantee that every copy sees all updates sent by the firsts. Secondary servers which
come back up from failures may pull the firsts to learn the recent updates. Secondary

servers can also run anti-entropy among themselves rather than rely on the firsts.

The Number of Sites

For a global context to be replicated widely around the world, a cluster can become
too big to handle. One solution to this problem is to reduce the number of secondary
servers which are registered with the corresponding first class servers, and to allow the
epidemic algorithms to be run among a group of secondary servers. For instance, an
organisation having hundreds of sites may register only several selected sites with the
first class servers, and those sites then send the updates to some nearby sites by rumour
mongering. Similarly, the anti-entropy should be run for spreading the updates to the few

sites that do not receive them as a rumour.
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Choosing Partners

The way of choosing partners when issuing rumours or doing anti-entropy can affect the
network traffic significantly. Experience with the Clearinghouse [Demers 87] suggests that
choosing partners uniformly results in a higher network traffic than spatial distribution
of rumours. By spatial distribution we mean that the partners are chosen according to
their distance to the “infective” site on the network. An infective site is a site willing to
share rumours with the other sites. Analyses and simulations on the Xerox CIN reveal

that spatial distributions converge nearly as rapidly as the uniform distribution.

5.7 Caching in the UNS

In this section, caching is discussed in more details. At first, previous work is reviewed;
then caching in the UNS is discussed; finally comparison with the previous work is per-

formed.

5.7.1 A Brief Review of Caching in Naming Systems

In general, a cache is useful for improving the performance of computing systems. For
instance, in a distributed system more expensive accesses to a remote server can be avoided
by caching the data nearby. Most file systems use caching for good performance. Much
work has been done on caching in naming systems [Terry 87, Birrell 82, Mockapetri88,
Lampson 86]. In Grapevine, the strategy of treating cached information as hints works
because people change their mailboxes infrequently and recovery from use of stale data
is possible. Similarly CSNET [Solomon 82] also used caching for mailbox information.
The DNS employs a time-to-live caching approach. Each database entry has a time-to-
live field whose value can be obtained at the time the data is registered. However, there
is not much suggestion of how the value of time-to-live should be decided. In contrast,
[Terry 87] allows more control of cache accuracy by the cache manager. Given the current
age of the data and its expected lifetime, the cache accuracy can be estimated to allow the
cache manager to maintain a desirable accuracy level. The approach tries to guarantee
a performance benefit from more accurate caching instead of simply increasing cache hit
ratio, so that clients will not waste time to use bad cache data. The way of using cached
hints in distributed systems is shown in Figure 5.7. In [Mann 87|, a client-based name
prefix caching approach is taken for performance-critical objects such as files, windows

and executing processes in distributed systems. The approach allows clients to send their
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Cachelookup

Try to use data

Data valid?

no

yes

Figure 5.7: The basic algorithm for using cached hints

name-mapping request directly, in the common case, to the manager that maintains the
object. If a client cache misses, multicast-lookup can be used among a set of managers

that might cover the name.

Problems with the cache model in Figure 5.7 are:

o Whether use of the obsolete data can be detected and how long it takes. The
experience with the CSNET [Solomon 82] name server suggests that the time to
detect bad cache information may vary from seconds to days. It is undesirable for
some clients to experience a high lookup cost in addition to recovery cost caused by

using poor accuracy cached data.

o Whether recovery at the application level is acceptable. If it is less desirable or
even impossible for some applications to use hints, other methods to maintain data

integrity should be employed.

e Which server the client should contact for validating the cached data. In Figure 5.7,
“query server” means to lookup a cached data which appears not to be working.
In systems like Grapevine and CSNET, it is not possible to find a server with the
most recent data unless all replicas have been contacted. On the other hand, clients
may not know which particular server to contact since it is made transparent by the

service.

In summary, [Terry 87] focuses on maintaining a desired accuracy level of cached informa-
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tion while many others concentrate on hit ratio only. [Mann 87] allows good performance
within the scope of a local administration or among several object managers, but a global
name service or a more powerful multicast mechanism is needed to deal with cache misses.
Considering a large distributed naming system with heavy replication, if a piece of cached
information appears not to be working, it can be very difficult to decide which server
should be contacted to validate the information. It is the common case that one can not
decide whether a cached data is valid or not until one has tried it out at all possible repli-
cas. Many applications cache hints because higher level recovery from using wrong data is
allowed. However, application level recovery has its cost and needs efforts from outside the
system. It is not clear whether all naming applications can use hints satisfactorily. Instead
of making efforts to improve hit ratio or estimate the accuracy level of cached information,
the UNS implements the two-class name service infrastructure while using caching as well.
Invalid caches are discarded when they are first found not working; clients or servers can
then contact the UNS by indicating the preference of queries. For applications which can
not afford higher level recovery from inconsistency, a query with a specified requirement

of accuracy can be applied and hints are not used.

5.7.2 Caching in the UNS

Name lookup in a large system such as the UNS is likely to be expensive, especially when
a directory is stored far away. It is desirable for a client or a server to be able to cache
the result of a name lookup which may be used again in the near future. A UNS server
caches its own name and names of the directories it stores so that it does not rely on the
UNS to lookup its own name. There are three kinds of data in the UNS, replica, read-only
copy and cache. The major difference between a client cache and a read-only copy, which
is also called an official copy, is that the latter is automatically refreshed by the system
and algorithms are used to maintain its accuracy, while the former is not. Read-only
copies contain a whole directory but a cache can be an entry or a directory or whatever a
client may like. A cached data is guaranteed to be up to date to the time indicated by a
time-stamp associated with it. It is up to the client to decide whether such a guarantee is
acceptable or not. For example, a mailbox name for a university student may be valid until
30th September 1991. The client can always obtain the most current data by indicating

the preference of a query operation.

The reasons that a piece of cached naming data fails to work could be: that a recent update
has not been seen since it is impractical for the service to keep track of clients of caching,

the server having the corresponding information is out of accesses, or just because the




CHAPTER 5. MAINTENANCE OF THE NAMING DATABASE 85

communication network is slow. In a case that a server is out of contact, there should be a
server or connection failure report rather than a rejection when using the data. Sometimes
it is not easy to tell a failure from a slow response, a timeout report is got by the client
rather than an error message. It is for the client to decide whether to contact the UNS or
just try the cached data again later on. The implementation of the two-class name service

infrastructure enables the client to find out what goes wrong in case of need.

Compared with previous approaches, the UNS needs little effort from the client of caching
to keep the cached data accurate. Client can always get a satisfactory answer either
from the service or the cache. There is also little restriction to the scope in which the
mechanism works. The UNS does not rely on underlying multicast or other such support
from the communication network. It is worth mentioning that although the UNS validates
caches on use as in the previous approaches, the cost of doing so is less expensive since
naming data is more properly replicated. For instance, a local directory may not be widely
replicated so that validation of a cache with the server is not expensive; there may be a
secondary service available with good enough data to save the client from going to the first
class service. However, more experiment in a real world is needed to give a more precise

judgement.

5.8 Summary

In the design and implementation of large distributed name services, replication control
plays a very important role. The benefits from replication are obvious in terms of per-
formance and availability. However, if correctness is considered, it proves that a tradeoff
always exists between correctness and the others. Previous work in this area tends to
engage with a single replication control method under all circumstances, although some
of them have taken semantics into account; the resulting systems either suffer inconsis-
tency for availability or performance gains, or do not scale properly. One contribution
of this research is to investigate many existing naming systems to get a clearer idea of
how name services are partitioned and distributed, how naming data is used and how
replication should be done. The two-class name service infrastructure is then introduced
to allow combination of a tight-replication control protocol with a loose one. The UFP is
studied and implemented as an example of the two-class name service infrastructure. The
epidemic algorithms and caching are also explored. In conclusion, the UNS allows reads
to proceed at anytime except when specified otherwise or when no servers are available.
The UNS permits most updates to happen although a few of them may be blocked until

failures are repaired. The official copies on the second class servers are refreshed by the
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first class servers so that any inconsistency can be resolved eventually. Finally, caching by

servers or clients can improve performance substantially.




Chapter 6

Dynamic Service Configuration

6.1 Introduction

In this chapter the configuration of the UNS is investigated. Two aspects are considered:
one is how to keep the service configuration data accurate, which determines reliable
navigation as described in Chapter 4; the other is how to manipulate replication sets. This
research focuses on dynamic service configuration. The effects of configuration changes on

navigation are also explained.

Previous design work on naming systems pays little attention to dynamic service con-
figuration. Dynamic configuration is essential to support the reconfiguration of a name
service as it continuously evolves. One design requirement of the UNS is a long service
life. During the life time of a name service, many changes may be made for either organ-
isational or operational reasons; many of these could not be foreseen in detail when the
name service was designed. Dynamic configuration allows a name service to adjust itself
to reflect changes, such as adding a new server to offload an existing server. It should be
carried out without modifying functional components or stopping the entire system. Fault

isolation is also required.

The rest of this chapter is arranged as follows. General aspects of name service configu-
ration and related work are given in Section 6.2. In Section 6.3, the UNS dynamic service
configuration is discussed. The algorithm and the correctness proof are also presented.

Finally, Section 6.4 concludes this chapter.

87
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6.2 On Name Service Configuration

In this section, the general aspects of configuring name service are studied. The require-
ments for establishing the service configuration are outlined, and the existing mechanisms

are examined.

6.2.1 Fundamentals

In a distributed computing environment, a number of services such as the time service, the
name service, the mail service and so on are run jointly by a number of organisations. In
order to provide clients with a uniform set of services, cooperation is generally required.
Unlike a centralised system, a distributed system comprises several servers at different
sites. Considering a global name service in particular, hundreds or even many thousands of
name servers, each of which is responsible for one or more portions of some name space, are
scattered widely around the world. Name service configuration concerns various aspects
such as follows:

e how many servers to have initially

¢ what information to be stored at each server or user agent for a start of name

resolution
e what information to be stored at a server for passing client requests to other servers
e when to add or remove a server

e where to set up new servers
There are more aspects to be considered if replication is used:

e how many replicas to have
e where to put a replica
e how to add or remove a replica
It is required that individual servers work cooperatively to form a large scale name ser-

vice. Various approaches in constructing services lead to different complexity of service

maintenance.
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Different Approaches
A distributed name service consists of a number of name servers. For convenience, those
storing inter-domain contexts are defined as global name servers; those responsible for

resolving names maintained by local administrations are local name servers.

There are five kinds of configurations found in previous naming systems. The first is
the Direct Access approach [Schwartz 87]. In this approach, the interfaces to local name
servers, which are usually heterogeneous, can be obtained by contacting an overall name
server - the global name server, which handles all these interfaces. Clients can then access
a local name server directly with the interface. The global name server has one level
mapping from global names to addresses of local naming authorities. Clients are well
aware of the difference among local name servers. Access and location transparency are
not offered. Transparency can be supported by employing a so called Naming Semantics

Manager introduced in [Schwartz 87].

The second kind of configuration is called Re-registration [Schwartz 87]. Any name to
be shared globally is re-registered in the global name server so that clients can look up
it via the global server. Local servers can not update their own portions of data which
are shared by the global server without coordination, otherwise consistency between the

global server and local servers becomes difficult to handle.

The third kind of configuration is Chaining [Linden 90]. It is similar to Re-registration but
the global server does only a single level mapping between the client and the local server.
Unlike the Direct Access Approach, any access to a local name server has to go through
the global name server. The global server masks differences of local servers. However, the

global server can become a bottle-neck since every request has to go through it.

The fourth kind of configuration is Federation [Linden 90]. In principle, the global name
server is distributed over all the participating servers of the federation, and acts as the
front end of them. It is a more general approach than Chaining. There are a set of
protocols that must be adhered to by every server in the federation. The ANSA Trading

Service uses this approach [Linden 90].

The last kind of configuration is Standardisation [X.500 88]. There is a uniform way to
organise name servers. The client contacts a Directory User Agent to start with, which
further connects to one or more Directory System Agents (DSAs) until the client request
is carried out. It is not necessary to distinguish a global server or a local one, since both of
these are DSA. In contrast to the Federation approach, there is only one Directory Access
Protocol that every DSA follows.
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Dynamic Configuration

Configuration may be static or dynamic. By “static” we mean that the service configu-
ration can not be changed while the service is running. By “dynamic” we mean that the
service configuration may be changed while the service is running, without stopping the
entire system. Since it is neither possible nor desirable to stop the whole service, which
is jointly run by many name servers belonging to autonomous organisations, the latter
should be used by the UNS. Dynamic configuration allows a name service to be recon-
figured when it is running, while most of its clients can still make operation requests as
usual. Ideally, clients of a name service should not perceive that the service configuration
is currently being updated. However, in real life the service may perhaps be seen running
slowly as a result. It should be noticed that in some large naming system designs, for
instance the DNS, configuration is implicitly assumed to be very stable, so that means
for tackling dynamic configuration is not provided as an integrated mechanism. Configu-
ration is either done in an ad hoc manner or left to local administration so that there is
no guarantee of correctness. The UNS puts dynamic service configuration into its system

architecture for robustness.

Configuration Data

As it has been indicated in Section 6.1, configuration may include two kinds of data: one
is responsible for navigation; the other is for replication. Data for navigation is essential
for operating the naming system correctly. Data for replication is not only for running

the replication control protocols but also for making navigation fault-tolerant.

Obtaining the Initial Configuration

Upon receiving client requests, a user agent or a global server contacts a local name server
with some cached information in hand. A user agent usually caches the addresses of a
number of servers in order to contact them. It depends on some lower level locating
primitives to obtain the cache initially. For instance, a broadcast mechanism on a local
Ethernet.

6.2.2 Requirements and Related Work

As discussed in the last section, configuration plays an important role in maintaining the
name service navigation and replication sets. This section examines requirements to allow
configuration of the UNS. The following three cases are considered the most important.

1. Keeping navigation functioning properly

2. Changing the replication information safely
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3. The algorithms for dynamic configuration

Related Work

In Section 6.2.1, five kinds of name service configurations were described. The UNS falls
into the standardisation catalogue. In implementing this kind of service configuration,
two markedly different approaches are outlined below: The reference approach found in
[X.500 88], and the replication approach used in the GNS [Lampson 86]. Replication is not
an integrated mechanism in X.500. By design, X.500 can live without much replication,
though it allows replication for robustness. In contrast, replication is integrated to the
GNS. The GNS provides operations for manipulating replicas, and sets server invariants
which require replicated data to enable navigation. Besides the fundamental difference of

design, there are further distinctions between the two approaches.

In X.500, naming data is maintained by the Directory System Agents (DSAs), i.e. name
servers. Each DSA contains two types of information: directory information and knowl-
edge information. The server navigation is done by using knowledge information (called
knowledge references). A X.500 Subordinate Reference (SR) is used by the DSAs for
walking down the Directory Information Tree (DIT). A SR contains both names and ad-
dresses of the DSAs holding the directory information, i.e. the naming data in question. A
DSA also keeps a Superior Reference (SR) (i.e. names and addresses of some other DSAs
closer to the root) for walking up the DIT. Additional spaces and methods are required

for maintaining the knowledge references.

The three server invariants set by the GNS have been discussed in Section 4.2.4. The
first two of them ensure navigation moving downwards the naming network and no loop
is formed; the last one ensures the root is reachable. An example taken from [Lamp-
son86] (reproduced in Figure 6.1) shows how these invariants are maintained by the ser-
vice configuration. In the figure, an example directory hierarchy is represented by ovals
and thin lines; an example service configuration is represented by rectangles, thick lines
and dashed lines. The server “ANSI/Mass” keeps a replica of the directory DEC and
PRIME for walking down the naming network; the name server “ANSI/DEC/alpha”,
“ANSI/Prime/1” and “ANSI/Prime/2” store the directory ANSI for moving up to the
root server “ANSI/MASS”.

There are two problems with the above strategy. In the former case, if ANSI has many
subordinate directories rather than just DEC and PRIME, it is expensive for the server
“ANSI/Mass” to store the replicas for all ANSD’s children. In the later case, if the root
directory ANSI is kept by all servers responsible for ANSI’s subordinate directories, con-

sistency is difficult to maintain. As mentioned in Chapter 5, the Sweep algorithm requires
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Figure 6.1: Distribution of directories among servers to satisfy the server invariants

that all the replicas form a virtual ring. If failures break the ring, no more sweeps can
be done before the ring is repaired. However, changing the virtual ring requires human
involvement. Losing some updates which have been done at a single server but not prop-
agated to any of the others is possible. Using heavy replication like this is both expensive
for maintenance of consistency and difficult for reconfiguration. Further more, maintain-
ing the ring is independent of maintenance of the replica sets in the GNS. It is up to the

administrators to ensure only one ring exists for each replicated directory at a time.

The UNS Approach

In a distributed computing environment, replication can be used to improve performance
and availability. By storing copies of shared data on nearby sites, the need for more
expensive access to remote sites is decreased. Replication is also the fundamental method
for achieving fault tolerance. By replicating critical data on sites with independent failure
modes, the probability that at least one copy of the data will be accessible increases.
Thus replication approach is used by the UNS. In comparison with the X.500 approach,
the UNS provides higher availability and more robust service. In addition, the UNS uses

the shorter-server-name approach, i.e. if a server keeps the replica for a directory, the
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distinguished name of the server should be shorter than the names of the entries in any
directory stored by the server. This is to avoid name resolution loops (see the example
in the next section). The UNS does not force a name server to have the replicas of the
directories purely for navigation as the GNS, because most of the data replicated in this

way is made redundant unnecessarily, and the cost for maintaining consistency is high.

6.3 Dynamic Configuration of the UNS

In Chapter 5, the protocol for the first class name service (UFP) was studied. In this
section, the UFP is extended to allow updates to the replica set (defined in Section 5.5.2).
The idea of a pseudo-replica is introduced for maintaining consistency of the configuration

data. Two invariants are given to ensure safety.

6.3.1 The UNS Configuration

The UNS service configuration has been described in Section 4.2.4. This section follows
up Section 4.2.4 with more detail. In the UNS, the naming data is partitioned mainly by
authorities which have control over the data. One authority may sponsor several name
servers. Some top level naming contexts, such as the root directory of a name space, can

be kept by a number of selected authorities within some administrational boundary.

Clients access the UNS via their local User Agents (UAs). On receiving a client request, a
UA passes it to a nearby name server. The server may further contact one or more other

servers in a recursive way (see Figure 3.3) until it gets either an answer or an error report.

Other kinds of navigations, such as the UA-controlled method (see Section 3.3.3), are
not used because a UA does not usually have the right to access every name server in-
volved. It is also difficult to keep the data for communicating with a remote server up to
date. The non-recursive server-controlled method is more suitable if underlying multicast

mechanisms are provided. However, the UNS considers more general cases.

In Section 4.2.4, three UNS server invariants have been given:

The UNS server invariants :

rl If s € S is not a root server, its distinguished name should be shorter than the distin-

guished names of any entry in any directory it stores.

r2 If s € S is not a root server, it must store references to other name servers which are
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either root servers or are closer to G.

r3 If s € S is a root server, it must contain the global index.

As r2 indicates, the UNS relies on the references for navigations to move up the naming
network. There is a trade-off between providing reliable references and hints. Ideally,
navigation should be made reliable even when the service configuration is being changed.
Caching alone can hardly achieve this requirement. To provide reliable references, however,
it must be noticed that although references and replica sets are part of the naming data,
they can not be treated simply as ordinary naming data. Thus tools have to be provided at
the administration level, which are extension of the tools for maintaining non-configuration

data.

An Example

Figure 6.2-(a) contains an example for illustrating how r1, r2 and r3 are met by the UNS
configuration. The rectangle denotes a server, and the oval denotes a directory. The arrow
denotes an arc on the directory hierarchy. #XXX represents a unique identifier. The server
#101/51 stores the directory CAMBRIDGE and ENG, the server #/101/ENG/S2 stores
SPEECH, #101/S3 stores CAMBRIDGE and CL, and #101/CL/S4 stores SRG and Al
This configuration satisfies invariant r1. For instance, the distinguish name of server 52
is #101/ENG/S2, which is shorter than any name with a prefix #101/ENG/SPEECH.
If rl1 is broken, a name lookup loop may occur. For example, suppose the server 52 is
named #101/ENG/SPEECH/S2. Then it will be impossible to look up this name, since
in trying to get from ENG to SPEECH in order to look up 52, the name resolution must
resolve #101/ENG/SPEECH/S2; this forms a loop.

Figure 6.2-(b) shows the abstraction of the service configuration, where references are
represented by solid lines; other navigations are represented by dashed lines. To meet r2,
the entries for resolving server name #101/S1 and #101/S3 should be stored by the server
S2 and S4 as references. It has been discussed earlier in this chapter that either a piece
of knowledge or a full directory may be used for the same purpose. However, the former
requires a special treatment and the later uses unnecessary replication. In order to avoid
using special method for references, the UFP protocol studied in Chapter 5 is extended
to allow a pseudo-replica - a reference keeper, to have votes as a full replica. Considering
the servers mentioned above again, server S2 and 5S4 may keep only a reference to S1 and
S3 instead of storing a full CAMBRIDGE directory. Therefore the name server group
for CAMBRIDGE directory is {S1, 52, S3, S4}, in which both S2 and S4 keep only a

pseudo-replica rather than a full-replica.

Both S1 and S3 should also store the global index (see Section 4.2), which is not shown
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Figure 6.2: A Sample Configuration

by Figure 6.2.

6.3.2 Maintenance of the UNS Configuration

In previous chapters, the UNS architecture and interface have been defined, and the UNS
replication control methods have been described. This section discusses maintenance of
the UNS configuration data.

Figure 6.3-(a) illustrates a directory hierarchy and (b) illustrates the same directory hier-
archy with replication detail of the CAMBRIDGE and the ENG directory shown in the
solid-line rectangles (the replicas are rl, 12 and r3 for the CAMBRIDGE directory; cl
and c2 for the ENG directory). The dashed lines show how the replicas are stored by the

servers (the servers are sl, s2, 83, s4, and s5).

As defined in Chapter 3, a directory contains a sequence of entries, each for one of its child
directories. An entry contains a number of attributes, one of which is the server name for
a child directory. For example, in order to resolve the name CAMBRIDGE/ENG/xyz,
the CAMBRIDGE directory is looked up first to get the server name for ENG. The server
name is then looked up for an address of the server. After replication is introduced, the
server-name attribute should contain a list of server names for all the replicas of a child
directory. For example, to look up CAMBRIDGE/ENG, one gets {s4, s5}. Either s4 or
s5 can be contacted for the ENG directory. On the other hand, s4 and s5 should both

keep a reference (represented by dashed line with an arrow in Figure 6.3-(b) ) to the root

servers. For example, s4 keeps {s1, s2, s3}.
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Figure 6.3: Replication of Directories

In order to run replication protocols, every replica in a name server group (represented in
Figure 6.3-(b) ) by a solid-line rectangle) should know about the others. This can be done
by keeping a list of server names for a replicated directory on each server. For instance,
rl, r2 and r3 all keep {sl, s2, s3} to be able to communicate with each other; c1 and c2

both keep {s4, s5} for the same purpose.

Initially the two lists, i.e. the one for navigation stored as an attribute, and the one for

replication kept by every replica are identical.

In Chapter 5, the two-class name service infrastructure and the replication control methods
which can be integrated to the infrastructure were described in detail. A directory can be
implemented based on the infrastructure. Some copies of the directory (called replicas)
are stored by the first class servers; some (called read only copies) are stored by the
second class servers. The UFP protocol can be run on the first class servers; the epidemic
protocols can be run by the second class servers. The question remains of how to store
and maintain the configuration data, i.e. the list of server names for a directory’s name

server group. Before further discussion, a definition is given as follows.

Definition 6.1 Let N; denote a server name set which consists of all the names of the
servers storing the replicas of the directory d. ! Let N denote the server name set which

consists of all the names of the servers storing the read only copies of the directory d.

To run the UFP protocol, N; should be kept by each of the first class servers. Each first

class server should also know N in order to call back the second class servers. This can

!Logically, when a replica set (see 5.5.2) is changed, the name server group is also changed. Practically,

the change of a replica set is carried out by update the server name set, i.e. Na.
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be done by requiring each second class server register with the corresponding first class
servers at its creation. There is no need for every second class server to be aware of all the
other second class ones, though some of them may cache information about other second
class servers. Each second class server, however, should store N4 to be able to poll the
first class servers for refreshing its read only copy and to forward client requests such as

updates or “slow read”.

Maintenance of the configuration is straightforward because it is similar to that of the
ordinary naming data. There is a particular type of entry for representing N on each
of the first class servers. The first class servers run the UFP protocol whenever a second
class server is to be set up or removed, then inform every member in N, including the
new member if it is an addition operation, by sending a message containing the update.
If any of the second class servers fails to get the message, it may learn it later by polling

the first class servers.

Extension to the UFP

The UFP has been discussed in great detail in Chapter 5. It can be easily extended to
allow changes being made on N,. For instance, a new replica of a directory d is installed
on the server s, so s should be added to Ny. The change of Ny is synchronised by the UFP
as the client requests. If care is not taken, however, inconsistency may occur. For example,
two replica sets for the same directory exist and have no intersection; each appears to be
able to form a quorum. In order to avoid this, the extended UFP requires that any request
only change one member of N;.2 For instance, suppose there are A, B, C, D, E and F in
Ny. If for some reason that B and E are to be removed, two requests should be conducted.
One may ask what happens if two coordinators start almost simultaneously to remove E

and B. The UFP ensures that the two requests will be synchronised one after the other.

It is a little tricky to propagate the change of Ny to the second class servers. After Ny on
the first class servers is changed, the corresponding copies on the second class servers will
become out of date. Again we can rely on the firsts to tell the seconds about the change,
but if some of the second class servers miss the information, there could be problems when
they try to contact the first class servers later. One solution is to estimate the frequency
of changing N4, and to make each second class server poll the firsts periodically according
to the frequency. Since it is not permitted to change more than one member of N on a

single request, the second class servers should always know some of the firsts to contact.

Another solution is for some of the second class servers to contact others which probably

ZLater in this chapter, it is explained further why the restriction is important for the correctness of the

UFP.
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keep track of Ng. It is very difficult to ensure that every secondary server has an up-to-
date N if there are failures. The epidemic algorithms have the property that any update
will be propagated eventually so that all replicas are identical if there are no more new
updates. Since the change rate of Ny is very slow, the method is good enough for the
UNS.

Configuration Constraints

Correctness constraints, namely three server invariants, have been set in Chapter 4 to
ensure that the UNS configuration is coherent initially. These invariants assure that
navigation is properly formed, i.e. the name resolution can manoeuvre up and down the
naming network. However, during the transition to a new service configuration, it is
possible for some service interruption to appear. For instance, a server has been removed,
but the references to it still contain the old bindings. Or a new replica has been added,
but no one can reach it. In order to prevent the service from interruptions and maintain

the robustness of the service, the configuration constraints are introduced.

Definition 6.2 If ris a replica of a directory d, and r is stored on a server s, then rOns

is true.

Definition 6.3 Let Ny(P) denote the server name set for a directory d, which is kept by
d’s parent directory as an attribute. Let N4(C) denote the server name set stored
by every replica of d. Initially, N4(C) = Ng(P).

Definition 6.4 Sy = {s| 3r € Ry A 7Ons is true },% i.e. Sy is a set of servers keeping
replicas for the directory d. There is no distinction between pseudo-replicas and full

replicas.

The Two Configuration Invariants
T1: Ng(P) N Ng(C) # 0.
T2: Vs € Sy, s stores Ng and N ;.

T1 requires that the two server name sets intersect during a configuration change. If 71
is maintained, no interruption of the service navigation will be caused, even if temporary
inconsistency between the two sets exists. 71 ensures the correctness of walking down
the naming network. If there is only a single replica for directory d, 71 may be broken
during a reconfiguration. For example, if the only replica is removed before the parent
directory is informed, i.e. Ng(C) | Ng(P) = 0. This can cause serious disruption to

some part of the system, e.g. a name lookup is sent to a server which does not exist. To

3See Section 5.5.2 for replica set.
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prevent such disruption from happening, the algorithm should check whether the number
of members in a server name set is less than two before a removal operation. However, the
problem can not go completely, human intervention may be required if a disruption, which
even replication can not help, happens. Alternatively, some underlying support such as

multi-site atomic action, or reliable multicast has to be employed.

T2 requires that every server of a name server group keep both Ng and N . Note that
although caching can be used to remember some cross references among servers to improve
performance, consistency of the two sets should be maintained by the first class servers.
T2 ensures that the consistency of Ng and N are maintained by the first class servers
running the UFP protocol. This is important for the correctness of walking up the naming

network and for the progress of the UFP protocol.

6.3.3 Discussions

Only two of the operations given in Chapter 3 have effects on the service configuration,
i.e. AddReplica and RemoveReplica. It is worth mentioning that operations on server
entries, such as adding a new server, removing a server or moving a server to a new address,
do not directly affect the service configuration. For instance, only after all replicas stored
by a server have been removed, can the server be removed. The existence of a new server
is not so important before it has some data stored on it. Thus name server entries can be
treated as ordinary application entries, except they may appear in the non-leaf vertexes

of a naming network. 4

The number of replicas is crucial for choosing replication control protocols. It is obvious
that when the number becomes too big, tight replication control methods are expensive.
In the UNS, global index should be heavy replicated 3 for availability. The two-class
name service infrastructure introduced in Chapter 5 can be used for the index replication
control. For example, a handful of sites are nominated as the first class sites, and the
rest are the second class sites. The strategy for replicating the index is similar to the UN
(United Nation) model. In such a model, permanent members of the security council are
like the first class sites; other UN members except those five are like the second class sites.
However, unlike the UN, joining the global index or leaving it is allowed if the first class

sites agree. It seems politics rather than technology to decide which protocol is used for

It should be noticed that a UNS server has a name shorter than the name of any entries in any
directory it stores. Thus the name server object is one of the two types, whose entries may appear in

non-leaf vertexes on a naming network. The other is the directory object.

5Caching is not considered as replication here.
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the index.

For authorisation consideration, a global context (any root other than the imaginary super-
root) may not be replicated on servers beyond its authority. A root may be required to
be replicated on non-root servers, acting either as reference or for robustness (reliability
and availability), or both. For instance, a replica of the UK directory can be kept by a
Cambridge server. Directories on higher positions of a naming network are required to
be heavily replicated, say kept on some dozens of sites. Again the two-class name service
infrastructure can be used. For those directories with fewer expected universal uses, e.g.
a university department directory is potentially less interesting than a national directory,
fewer replicas are needed, a tight replication control mechanism may be used for offering
clients accurate naming data. Loose replication methods may be used too if naming data
is very stable. It is important to provide clients flexibility rather than forcing them to

commit to only one mechanism.

6.3.4 The Algorithm

In Chapter 5, Ry was defined as the set of replicas for the directory d, and Sy the logical
Name Server Group (NSG) of d. Ny is introduced in this chapter for defining the server
name set of d. A server may belong to different NSG if it keeps replicas for different
directories at the same time. In implementation, Ny is associated with a timestamp, which
is increased after each successful update, and should be kept in a stable storage. Only
one replica can be removed, added or moved by a request. This restriction is important
for maintaining 71. Because of this, intersection exists between Ny4(P) and N4(C) after

a reconfiguration.

Chapter 3 has defined the operations for replicas. The interface can be found in Fig-
ure 3.6. Here the operations are discussed in more details. The semantics of configuration
operations is given informally in this section. The system will be in one of the following
status: service: when the system can accept and carry out client requests; suspended: when
the system stops responding ordinary client requests but configuration; failure: when the

system is not available due to server crashes, communication failures and so on.

The algorithm makes the UNS reconfiguration appear to be atomic to clients by using
semantic information and replication. It ensures that an attempted change to the config-
uration is carried out correctly and becomes stable, otherwise it can be rolled back to the
point before the change. Atomicity can be achieved more cheaply than in some well known

tight replication control mechanisms. Temporary inconsistency has an effect similar to a
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server not responding to client requests due to network delays or other failures. This kind
of inconsistency should disappear as soon as the reconfiguration is fulfilled, so that clients

only perceive the system running slowly.

GetNset(dname, opt) simply returns the server name set of the directory dname. If
“accurate” is specified (opt = 1), it is guaranteed that the current state of the server name
set is returned. Otherwise the server receiving the GetNset request will return the server

name set kept by itself.

AddReplica(sname, dname) adds a replica of the directory dname to the server sname.
This involves installing a replica on the server sname, adding sname into every copy of the
server name set for the directory and modifying the attributes in the directory’s parent.
When the operation starts, no more client requests are accepted. However, client requests
in-progress are allowed to finish. GetNset is used to obtain the server name set for the
directory dname. The parent directory is updated using the ModifyEntry operation. Note
that only after the replica is stored by the server, can its server name set be modified.
Before the parent directory is updated, the new replica should be made known to other
servers. The parent directory can then be updated. In other words, the operation consists
of two synchronisations: the first is for updating the configuration data of replication while
the second is for the data of navigation. Thus the server sname will remains unknown to

the outside world if the operation crashes after the first synchronisation.

RemoveReplica(sname,dname) removes a replica of the directory dname from the
server sname. Similarly, client requests are not accepted during the operation. The
operation updates the corresponding configuration data (Ngueme(P)) on the parent di-
rectory first, then the server sname is expelled from Ngpame(C). In the end, the replica
may be destroyed. In other words, the operation consists of two synchronisations: the
first is for updating the configuration data of navigation while the second for the data of
replication. Thus client requests will not be passed to server sname if the operation fails

after the first synchronisation.

Figure 6.4 shows the three procedures. Nset is an attribute type for server name sets.
The operations do not need multi-site transaction support if the UFP is used to implement
the for loop in AddReplica or RemoveReplica. ModifyEntry can be implemented with the

two-class name service infrastructure.

It is worth mentioning that a directory’s server name set is usually different from its
parent’s. It is important to understand that the two sets are not involved into the same

round of synchronisation, i.e. they do not change together.
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Nset UNS::GetNset(char* dname, int opt)
{

return(ReadEntry(dname, Nset, opt));

}

int UNS::AddReplica(char* sname, char* dname)
{
Nset ngq;
stop accepting client update requests;
wait until in-progress updates complete;
install replica of directory dname on server sname;
ng — GetNset(dname,l);
for (n € (nq U {sname})) do
{//change replication configuration
add dname to server n’s server name set;}
ename <« the name of directory dname’s parent;
//change parent configuration
ModifyEntry(ename, Nset, n);
exception handling;

end

}

int UNS::RemoveReplica(char* sname, char* dname)
{
Nset ng;
stop accepting client update requests;
wait until in-progress updates complete;
ename <« the name of directory dname’s parent;
//change navigation configuration
ModifyEntry(ename, Nset, n);
ng — GetNset(dname,1);
{//change replication configuration
for(n € (ng — {sname})) do
delete dname from server n’s server name set;}
exception handling;

end

Figure 6.4: Configuration Procedures




CHAPTER 6. DYNAMIC SERVICE CONFIGURATION 103

Correctness of the Algorithm

The algorithm introduced in this chapter allows the replica set to be changed through
changing the corresponding server name set. Care must be taken when making such
changes, otherwise inconsistency may be caused. For example, there may be a new replica
set having a majority that does not intersect with the previous one, so that some client
requests already passed get lost. If a majority set of the replica set before the change and
after the change intersect with each other, the correctness of the configuration algorithm
will be maintained. This can be ensured by requiring that only one member of the server

name set be changed by any request.

Definition 6.5: let M; be any majority set of N; before Ny is changed. M, be any
majority set of Ng after Ny is changed.

Definition 6.6

Let N, be the total number of members in N; before operation AddReplica or Re-

moveReplica, such that

N; = 2k, if N} is an even number,

Ny = 2k + 1, if N is an odd number,

where k= 1,2,3,....

Similarly, let N, be the total number of members in Ny after one of the two operations.

Suppose that each member has only one vote. The definition implies that N, > 2.
Predicate C: My N M, # 0.

Predicate C means that the majority set of Ny before a reconfiguration and the one after

should intersect. ©
Lemma: C is maintained by the extended UFP.

Proof:

For addition, suppose N, = 2k, then M, has at least k£ + 1 votes, and M, has at least
k + 1 votes because N, = 2k + 1. If the new member is not in Mg, it is obvious that M; N
M, # 0. If the new member is in Mg, the other £ members must have one in common
with M, otherwise, N should be 2k + 1 rather than 2k O.

Similarly if N, = 2k + 1, M, has at least £ + 1 votes, and M, has at least k£ + 2 votes
because N, = 2k + 2. If the new member is not in M,, it is obvious that My N M, # 0.

If the new member is in M,, then the other £ + 1 members must have one in common

6 .« e . .
Majority consensus is used here although the algorithm can also use quorum consensus. For general
quorum consensus, dynamic vote reassignment may be involved. Techniques for dynamic vote reassignment

have been discussed in [Barbara 86, Barbara 89]. It’ s not addressed by this research.




with My, otherwise, N}, should be 2k + 2 rather than 2k + 1O

For deletion, if N, = 2k, then M, has at least k + 1 votes, and M, has also at least k
votes because N, = 2k — 1. The k members forming M, must have one in common with
M,, otherwise, N should be 2k + 1 rather than 2k O

Similarly, if N = 2k + 1, then M, has at least £ + 1 votes, and M, also has at least k+1
votes because N, = 2k. The k + 1 members forming M, must have one in common with

M,, otherwise, N should be 2k + 2 rather than 2k + 10

The extended UFP is 1SR because C is maintained and the UFP is 1SR.

6.4 Summary

The UNS dynamic configuration is discussed in this chapter. Two kinds of naming data
are concerned: one for navigation; the other for replication control. Two configuration
constraints are introduced to ensure that the UNS configuration is coherent when dynamic
configuration is allowed. Operations are developed for managing the configuration, which
make use of the extended UFP protocol. A safety condition for changing the replica set

is introduced and it is proved that under the safety condition, the extended UFP is 1SR.

As discussed in Chapter 3, although heterogeneity is preferably avoided, it is often not
possible to get rid of it completely. Taking international phone systems as examples,
observations suggest that uniformity is achieved at national level, while heterogeneity
is reserved at the local administration levels. For instance, the phone numbers for two
individuals in two different countries may not have the same length, although they both
include the three-figure national code. The UNS requires that all participants adhere to
some universal agreements such as the format of the distinguished names and the rules of
name resolution. However, the UNS also allows for heterogeneous local name services to
be interfaced to it. Local naming systems may have different syntax or semantics such as
file system naming or RPC naming and binding; they are running with various underlying

mechanisms such as multicast or end-to-end network transportation protocols.

Unlike those five configuration methods mentioned in Section 6.2.1, the UNS provides a
unified naming scheme. Heterogeneity is allowed at some local levels, but is completely
hidden from the client view. It emphasizes scalability, uniformity, availability and robust-

ness.




Chapter 7

Implementation of the UNS

7.1 Overview of The UNS Implementation

A name resolution model, introduced in Chapter 4, allows restructuring of the Universal
Name Service (UNS) name spaces. The design of the UNS is described in Chapter 3
and the protocols for naming data maintenance is given in Chapter 5. It is natural to
question the feasibility of the sophisticated UNS design. For a system to be practical
it must supply a service that clients find useful. The system must be possible to build,
and it must perform adequately. This chapter discusses the prototype implementation of
the UNS in detail. The rest of this chapter is organised as follows: Section 7.2 discusses
how the design given in previous chapters is simplified and what assumptions are made.
Section 7.3 describes the UNS prototype implementation in detail. Finally, Section 7.4

discusses what has been learned from the prototype implementation.

7.1.1 UAs and Servers

The UNS can be divided into a number of major modules according to their functions.
The UNS consists of two components: the User Agent (UA) and the Server. A UA runs
on each client machine so that a client can invoke a UA operation to pass a request to a
name server. A name server maintains a portion of the naming database and processes
incoming requests in cooperation with other name servers as necessary. The abstract
interfaces for client and server management are described in Chapter 3. A UA has cached
information (such as names or addresses) of several name servers, which enables a client
to get service from any server available without knowing the server’s name or internet

address, even when there are some failures of server machines or communication links.
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Figure 7.1: The Modules of the First Class Service

Clients invoke UAs by procedure calls, while UAs contact servers through the UA/Server

protocol. Servers communicate with each other through the server protocol.

The First Class Service

The two-class name service infrastructure was introduced in Chapter 5. The UNS First
Protocol (UFP) and the epidemic algorithms can be integrated into the infrastructure. For
running the UFP protocol, defined in Chapter 5, a UNS server should be composed of two
parts as shown in Figure 7.1: one performs the coordination function (server-c), and the
other performs the participation function (server-p). The participation function has direct
access to the naming data. The two parts run in two processes on the same server machine.
To implement the fast read operation a UA may bypass a server’s coordination part and
connect to a server’s participation part directly. This facilitates good performance, as

shown in a dashed line in Figure 7.1.

7.1.2 Clients and Administration

The UNS has a comprehensive set of operations for applications and maintenance. Clients
make requests through UAs, while a system administrator can use a special set of oper-
ations with direct access to servers for maintaining the service. A distributed monitor

service is necessary to give the system administrator an overall view of the current system
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state. The provision of such a monitor service is outside the scope of this research.

7.1.3 Storage of Naming Data

The UNS maintains an enormous database partitioned and distributed among name
servers. A UNS name can be one of the following types: a UID type, a string type,
or a combination of both. A name is mapped onto one or more attributes. Each attribute
has a name and a type defined in an object class. Example types for attributes are title,
password, machine address, and location. Operations on each attribute type are defined
within the object class to protect object data specified by attribute definitions. A direc-
tory object consists of a number of elements and each element is composed of a name to
attribute mapping. The size of a directory or an index may not exceed a few megabytes
because of name data partitioning. The update rate on each portion of data is low and
update operations are not composed of multiple client actions. The simplicity of the UNS
database in terms of data type, size, and user demand makes it possible to use the small
database technique [Birrell 85]. A server machine might be supported by a stable storage

service for information backup.

7.1.4 Configuration

Configuration of the UNS can be done during normal service operation. Dynamic config-
uration, supported by a group of operations at the service administration level, makes use
of the same mechanism as ordinary data. Figure 7.1 does not illustrate how navigation
is to be implemented. This may be accomplished by storing proper naming information
among several servers, forming an acyclic path towards the target server in which the

name to be resolved is bound.

7.2 Prototyping the UNS

Great effort is required to implement a global name service like the UNS. For example, the
UK Pilot Project of Directory Service [Kille 89], under development for more than three
years, involves many people from a dozen academic institutes. The distinguished features
of the UNS are the ability to restructure the name spaces as they grow and the ability to
maintain strong data integrity. The prototype UNS focuses on these aspects rather than
the implementation of a complete large distributed name service. It is constructed to show
the feasibility of the UNS design.
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7.2.1 The Simplified Model for Prototyping

Some very large scale name service such as the Domain Name System [Mockapetri8§]
and the DEC Distributed Name Service [Martin 89] have been running, but they neither
support name space restructuring nor the two-class name service infrastructure. The
epidemic algorithms has been evaluated at Xerox PARC [Demers 87]. Thus, in order to
verify the design proposed by this research, implementation effort for the UNS has been
concerned mainly with establishing the first class service maintaining the global index (see
Chapter 4). The prototype service should run the UFP developed in Chapter 5 efficiently

and support part of the name resolution model described in Chapter 4.

Different Approaches

Two approaches to the implementation of the global index are compared. The main con-
sideration is to make the global index scale gracefully as the Universal Name Service grows.
The first approach uses a table of pure names as the unique directory identifiers. Pure
names offer the advantage of transparency although, they are not good parameters for
location algorithms. The second approach employs a tree structure for a very large global
index. Unfortunately, as the system becomes very large the global index must be parti-
tioned, and the system exhibits poorer performance if compared with the former. In a very
large system, it is not acceptable to resolve names using frequent global searches. Some

compromises must be made to enable the global index to work effectively and efficiently.

In addition to the system scale, a distributed and replicated global index offers greater
availability and reliability. A sensitive issue in replicated systems is the propagation of
updates. In the UNS design, emphasis is given to different replication control methods in
order to meet different consistency requirements of naming data. The index is a common
starting point to resolve global names as well as a back up service for clients to find out
what is wrong if naming data is stale. The requirements of replicating the global index

include: reliability, availability, and fault tolerance.

The most interesting aspect of the implementation is the way in which the index is main-
tained. As mentioned in Chapter 5, different replication control methods are employed
according to different requirements. The index is replicated on many servers. Some servers
are the first class servers running the UFP protocol; the others are the second class servers

running the epidemic algorithms.

The prototype service provides operations such as add, disable, modify and lookup. Repli-

cation and concurrency control are transparent to clients.
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Assumptions Made

In the UNS prototype, a single table implementation is used based on the belief that it
can abstract away some common well-known problems of name services, and focus can be
given to more interesting problems such as reliability and availability. A table with one
thousand entries is implemented. Each entry contains a mapping from a unique identifier

to a set of server addresses of a root directory or a set of server identifiers.

Two assumptions are made by the UNS. Firstly, comes the size of the global index. Some
tens of thousands organisations around the world may build their own name spaces and
be willing to integrate with the UNS. The number of name space roots roughly reflects
the number of UDIs in the global index.! This requires several hundred thousand to
several million bytes of memory, a relatively small amount given current hardware capacity.
Therefore, implementing the global index as a table to be stored by a name server is
possible. Perhaps, large organisations will have more than one name space. It may also
be necessary for some local directories other than the organisational root directories to
register themselves with the global index. In other words, it is possible for the size of the
global index to grow beyond the specified size. In order to avoid linear growth of the index
as the number of UDIs increases, a two level tree structure is proposed to implement the
global index. The table approach is very attractive not only because it makes use of pure
names to provide a high degree of transparency but also because it can work effectively
with the Universal Name Service. With the tree approach, the advantage of using pure
names is lost; the UDI name space is partitioned into a root index and several leaf indexes.
A UDI must carry some hints of indexes to be resolved efficiently. The advantage of the

second approach is that it can accommodate many more UDIs than a single table.

Secondly, comes maintenance of the global index. The index is used to resolve UDIs. Any
name lookup of the UNS starts with a UDI. Since the index contains mainly the UDIs of
a large number of local root directories, it must be heavily replicated so that the UNS can
work efficiently and reliably. Regard to the two methods of implementing the index above,
the two-class service infrastructure proposed in Chapter 5 applies to both cases. Some
more assumptions are made in the next section to allow the right replication mechanism

to be implemented.

1UDI stands for the Unique Directory Identifier. See definition in Chapter 3.
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Figure 7.2: The System Environment
7.2.2 The System Environment

Although the name service is designed to be globally accessible, simulations on a LAN are
used in this design. Machines involved would be either server or client machine connected
by a LAN. A server machine has a considerable amount of main memory and is supported
by a stable storage server to retain the server state in the event of a crash. The data
is stored in the memory as long as the server remains running. The mechanisms for
small databases including logging, check-pointing, and local atomic action are assumed
available. Clients may access servers through a User Agent module on any client machine.
UAs communicate with servers via RPC and keep caches. Communication among servers
is also carried out by RPC. Each machine is equipped with a clock. Figure 7.2 describes

the system environment.

Sun RPC

A high-level communication paradigm which enables application programs to make pro-
cedure calls in a distributed environment without knowing any details of the underlying
network is remote procedure call - RPC mechanism. Many systems providing RPC have
been built over the last decade. The Sun RPC [Sun 90] developed in 1985 at Sun Mi-
crosystems Inc has three layers. The highest layer is totally transparent to the operating
system, machine and network upon which it is run; users are not aware of using RPC
at this level. The middle layer hides details about the operating system and other low-
level implementation mechanisms; it is distinguished by its simplicity. The lowest layer
allows more control over the calls to be made, such as timeout values and specification of

transport mechanisms than others. The Sun RPC is available in C programming language.
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C++

The C++ programming language [Lippman 89] is an evolution of C with three important

extensions:

e support for abstract data use and creation
e support for object-oriented design and programming, and

¢ support for stronger type checking than C

C++ retains the simplicity of C expression and speed of execution.

Recently, C++ has become available on a variety of platforms. The Cambridge Computer
Laboratory makes C++ available on VAX, SUN and HP machines running Ultrix, SunOS,
and HP-UX operating systems respectively. Zhixue Wu has written a Sun RPC generator
for C++.

7.3 The Implementation

Given the simplified model in section 7.2 and the replication control protocol in section 5.5,

this section describes the UNS prototype in detail.

7.3.1 The System Architecture

Following Figure 7.1, the prototype implements a UA class, a UNS class for server-c -
providing the coordinator function (see also Figure 5.3), and a UFP class for server-p
- providing the participant function. The index is kept in main memory with a storage
server as backup and support for atomic actions. The data structures and their operations

provided are described next.

7.3.2 The Data Structure

The data structure of the index is shown in Figure 7.3 using C++ syntax. An index
element is composed of a key of the UID type and values associated with the key. The
value associated with a key is a VAL type, which is a union of a machine name or a set
of SIDs. The index consists of a sequence of elements. As described in Section 5.5, the

coordinator issues a synchronisation identifier when starts to synchronise a client request.
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The identifier is implemented by the TS class and has three operations: create, compare
(tcmp) and increase (tinc)). The TPR class is for the Table of Pending Requests, which
contains pb - the identifier of the last synchronisation that the server voted; nb - the
identifier of the last synchronisation that the server promised to participate; pd - the
previous request (which are time-stamped) that the server has voted for. The UFP class
implements the index and the participant operations. The UNS class implements the

replica set, the quorum and the coordinator operations.

7.3.3 The UA Operations

Figure 7.4 outlines the user agent operations. The entrance of the index is well known
to any servers. After a Unique Directory Identifier (UDI) is disabled, it may not be used
again. There are more operations related to maintenance of the global index such as those
to set up an index server, move a server or index etc. Those operations are outlined in
Chapter 3.

The semantics of the interface is as follows:

query :
UA::query looks up a given UDI and a name of a server which stores the corre-

sponding directory is returned. 2

modify :
UA::m._s replaces a specified server name with a new one.

UA::m.d replaces a specified server identifier with a new one.

The modify operations are used to reorganise the name space, e.g. to destroy a directory
or a name server, to add a new directory or a server to the UNS, to move a server or a
directory, or to merge two existing root directories. The procedure for moving a directory
is illustrated in Figure 4.4. The parent of the directory is changed but the UDI for it
remains valid. Note, names like #111/C are no longer valid unless a soft link is provided

by the system.

To the client, there appears to be a single index, although the implemented index is
replicated. Any operation can raise a “failure” exception, which means the service is
unavailable even with replication. A full description of the algorithms used for replication

control was given in Chapter 5.

2The RPC mechanism translates a machine name to a network address and uses the result to make a

connection to a remote machine.
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class UID {
public:
UID create(void); int uidemp(UID);
private:
long UID,; };
class VAL {
int type;
union {
char ad[CSIZE];
long sid[NUM_REP];
} VAL.u; };
class Element {
UID udi; VAL val; };
class TS {
public:
TS create(void); int temp(TS); TS tinc(TS);
private:
long t; UID site; };
class D {
short flag; TS dn;
char d[LENGTH];
UID v0; VAL vl; VAL v2; }
class LV {
TS b; int vote; D d; };
class TPR. {
TS pb; TS nb; D pd; };
class UFP {
public:
void Init(UID, int); LV NextS(TS,TS);
int BeginS(T$S,D); VAL Commit(TS,D);
private:
TS ver; TPR tpr[TSIZE]; RW lock;
FILE index log;
Element index[SIZE};
VAL lookup(UID); int -modify(UID, VAL,VAL);
int -insert(UID); int _disable(UID); };

Figure 7.3: Object Class of the Index and Others
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UA Operations

int UA::query(UID key, int opt, char* a) {
exceptions: NotFound,
Failures;
b
int UA::m.s(UID key, char* vn) {
exceptions: NotFound,
NotCompatable,
ConfigurationError,
Failures;
b
int UA::m_d(UID key, UID vo, UID vn) {
exceptions: NotFound,
NotCompatable,
ConfigurationError,
Failures;
b
//For administration only
LIST UA::Snapshot(void) {
exceptions: Failures;
J§
int UA::Sconf(char *old, char *new) {
exceptions: NotFound,

Failures;

};

Figure 7.4: UA Operations
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7.3.4 The Server Operations

The operations provided by servers include snapshot for replica set, a set operations for
the UFP, as well as lookup and modify operations. The server also provides operations for
failure recovery, which are not shown in figure 7.5. The operations are at the system level

and are transparent to clients.

The semantics of the server operations is as the following, see also Section 5.5 for the detail
of the UFP:

UFP::NextS :
This operation checks whether the coordinator has the current data. During
the first phase of the UFP, the coordinator (implemented by UNS::svcc) invokes
UFP::NextS several times to send its version number and a synchronisation iden-
tifier to every active server belongs to the same NSG - the Name Server Group. An
“QK?” is returned if the version is current, otherwise the participant’s current version
number is returned. A “REJ” is returned if the coordinator does not start with a

big enough synchronisation identifier.

UFP::BeginS :
This operation is for synchronising the client requests. During the first UFP phase,
on receiving a quorum number of votes from some participants, the coordinator
can choose a client request. Then it begins the second UFP phase by calling
UFP::Begin$ several times to send the chosen request to every server which voted
for the UFP::NextS. Either a vote (represented by an integer) is returned by the

participating server or an error is raised.

UFP::Commit :
This operation tries to implement the client requests. On receiving a quorum number
of votes from some participants, the coordinator invokes UFP::Commit with the
chosen request and the incremented version number. If it is a lookup operation, a
value will be returned. If it is an update operation and the update is successful, zero

is returned. Otherwise an error is raised.

UFP:: lookup :
This operation implements the low level operation for lookup. It looks up a given
UDL. If the UDI exists, a server name for the corresponding directory or a SID for

a server storing the directory is returned. Otherwise errors are raised.

UFP:: modify :
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This operation implements the low level operation for modification. It replaces a

specified server name or identifier with a new one.

UNS::svee :
This operation runs the coordinator code, which invokes UFP::NextS, UFP::BeginS

and UFP::Commit respectively during the three UFP phases.

UNS::Snapshot :
This operation returns the current member of a NSG. Errors are raised if servers are

unavailable or there are communication failures.

UNS::Sconf :
This operation allows dynamic change of a NSG. Only one server can be added or

removed at a time. Errors are raised if the operation is not successful.

7.4 Lessons from the Implementation

The feasibility of the UNS design has been verified in part by prototyping the global
index. This section presents the analysis of the performance results which is followed by

a discussion.

7.4.1 Performance Measurement

Performance measurements of the UNS prototype have been taken on a number of DEC
microVAXII and DEC vs2000 workstations under light loading (between 0.5-1.4). The
round-trip delay of Sun RPC using C++ is about 18 ms. Lookup on the local Ethernet
with preference to fast read is satisfied in 25-54 ms. The elapsed time for running UFP
is about 100-130 ms. Table 7.1 gives the elapsed time for lookup and modify operations
with a varying number of replicas. The increase in cost as the number of replicas increases
is due to sequential RPC calls in the current implementation. If a multi-threading or
other mechanism were used, the linear increase could disappear. The single site perfor-
mance measurement in Table 7.1 is in fact meaningless but is illustrated to estimate the

performance improvement should a parallel RPC call be employed.

7.4.2 Response to the Design Objectives

In Section 3.1.2, the UNS design ob jectives were outlined. The advantages of the UNS are

its ability to restructure name spaces and support of high availability along with strong
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Server Operations

LV UFP::NextS(TS b, TS num) {

b

exceptions: Failures;

int UFP::BeginS(TS b, D dec) {

Y

exceptions: Failures;

VAL UFP::Commit(TS b, D dec) {

b

exceptions: Failures;

VAL UFP::Jookup(UID key) {

b

exceptions: Failures;

int UFP::cmodify(UID key, VAL old, VAL new) {

¥

exceptions: Failures;

int UNS::sve_c(UID key, VAL old, VAL new) {

Failures;

}; LIST UNS::Snapshot(void) {

Y

exceptions: Failures;

int UNS::Sconf(VAL old, VAL new) {

Failures;

exceptions: NotFound,

Figure 7.5: Some Server Operations

The number operations
of replicas lookup (ms) | modify (ms)
1 125 127
3 246 314
7 510 721
10 727 998

Table 7.1: Performance Measurement
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naming data integrity. The UFP protocol is developed for replication control of the UNS

first class name servers.

¢ Flexibility
The UNS design supports flexibility of restructuring name spaces naturally through
merging or migration. The prototype implements the global index on a LAN without
any practical difficulty. Merging name spaces and migrating directories or servers

are both supported.

o High availability and strong data integrity
Usually a lookup request from a client can be satisfied by a fast read (local) operation
in less than 60 ms (elapsed time 25-54 ms). A local lookup operation is much faster
than a quorum read (elapsed time: 246-727 ms). Clients can specify preference to
a query in order to meet their needs. The prototype shows that the objective of

providing strong naming data integrity can be achieved at a reasonable cost.

¢ Dynamic configuration
The prototype supplies operations for UA or name server set reconfiguration. Re-

configuration is done by the system administrator via the administration interface.

¢ Fault tolerance
The modularity implemented by the UNS prototype shows that failures are isolated.
If a client fails, servers are not affected. If a server fails, other servers will continue.
A server-c can not run without a server-p, so that if a server-p is down, the cor-
responding server-c fails as well. Clients are completely unaware of the connection
with a particular server, chosen by the UA at the time the connection is established;
if a server or communication link fails, a UA will find another available server and
try to contact it. As far as the UFP is concerned, if the required quorum number of
servers are alive, the service continues. Hence, the failure of a few sites will certainly

not cause the entire system to halt.

It is highly valuable to allow multiple coordinators. Experiments with the UNS prototype
show that a higher degree of concurrency is obtained when there are two coordinators
organising the synchronisation simultaneously; each runs as if it were the only coordinator.
Performance decreased when more than two coordinators issued requests simultaneously.
The implementation ensures that no fault is caused in this case but a server might be
suspended and a client gets a “ server not available, try later” message. The decision

to allow multiple coordinators is feasible and avoids the complexity of having an election
algorithm.
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The scale of the implementation is small in comparison with the scale implied by the real
UNS. Some properties of the UNS such as those mentioned in Chapter 5 can only be

validated by a large scale implementation.

The current implementation mechanism can be easily applied to realize a global index
server containing up to several millions elements. There is no clear indication, however,
that the UNS will grow too big so that the tree structure is required to implement the
global index. In the future, when mobile computing comes to daily life, and organisations
are no longer the major base of the directories, the tree structure or other mechanisms

may be required.




Chapter 8

Conclusions

This research has investigated several issues of designing a universal name service. The
UNS provides primitive naming facilities to support sharing of objects and communication
among various entities in a distributed computing environment. In addition to naming
objects unambiguously and accessing objects by name efficiently, the UNS is very flexible
to adjust itself to reflect organisational changes. Although existing database management
techniques as well as communication protocols, including RPC mechanisms, can be em-
ployed by name services, the thesis points out that the semantics of naming should also

be exploited for better performance and service reliability.

This chapter concludes the research presented by illustrating three parts: firstly, it reviews
what has been done in the area, and motivates the UNS design; secondly, it compares
the UNS with other approaches; successes and losses are analysed; finally, it reveals the
possibility to set up an Open Name System Architecture, which allows applications of name

services freedom to combine or to dispose of naming components with various functions.

8.1 Towards Universal Naming

The advantages of distributed systems have been widely recognised. A distributed system
can be extended incrementally to meet the growing demands from its customers. Sharing
in such systems has reached the greatest degree ever since computers were invented. A
distributed system is of higher availability and more fault-tolerant. Reliability can also be

achieved even when there are failures.

Although a distributed system may be built in a more cost-effective way than a conven-

tional centralised system, they have some disadvantages. Leslie Lamport once defined a
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distributed system as a system in which the failure of a computer one has never heard
of can make it impossible to get work done. A centralised system provides a high degree
of coherence since all tesources can be used and managed in a uniform way. The real
challenge today is not only how to exploit the benefits of a distributed system but also
how to maintain its coherence. The designers of distributed naming systems face this and

other challenges.
As reviewed in Chapter 2 and Chapter 3, previous work has contributed significantly to
computer naming in the following aspects:
[Shoch 78, Saltzer 79, Saltzer 82, Birrell 82, Oppen 83, Sollins 85, Terry 85, Lampson 86,
Schwartz 87, Mockapetri88, Peterson 88, Cheriton 89, Martin 89, Linden 90]

e purposes of naming: to support cooperation, communication and sharing

e name resolution models and mechanisms

e unambiguous naming

e name database maintenance

e five naming models: uniform naming, federated naming, naming confederation, in-

tegrated naming and heterogeneous naming

e distinct functions of naming: attributes-based naming, primitive naming, addressing

and routing
e exploiting replication and caching
However, there are still many unanswered questions. For instance, scale and evolution of

distributed naming systems, configuration management, and reliability with high avail-

ability. Dissatisfaction with existing naming systems motivated the design of the UNS.

8.2 Evaluation of the UNS

Based on the experience from the UNS prototype, the design goals given in Section 3.1.2

have been met. The main contributions of the research include:

1. The construction of a global UDI name space. Flexibility of name space restructuring
is supported by allowing the addition of directories to or the removal of directories

from the global UDI name space. Hierarchical name resolution is also supported by
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the UNS because using unique identifiers only can not satisfy other requirements

such as autonomy;

2. a two-class name service infrastructure is defined for replication control. Data repli-
cation implies storage of shared data on processors with independent failure modes;
it improves performance and availability because the need for expensive, remote
read accesses is decreased, and the probability of at least one copy of the data
will be available increases [Davidson 89]. In the UNS, the distinction of replicated
data is made. Some are defined as replicas which are managed by a few number of
servers called first class servers. Others are defined as read-only copies maintained
by secondary servers. The rest are client-caches. Some secondary servers for a data
partition could be the first class servers for other partitions of naming data. This
distinction makes the following possible: replicas are responsible for UNS data in-
tegrity; read-only copies are responsible for higher availability; caching is used to
improve performance. The second class servers reduce read overhead from the first
class servers, and improve service efficiency when most application requirements can

be satisfied by making use of hints;

3. this research indicates that name service configuration involves two distinct issues:
how to store and maintain replication configuration; and how to store and update
server configuration. Previous work has addressed one or the other of these concerns
but not both. The UNS takes both into account and novel methods are used to

support dynamic service configuration.

Standardisation vs. Heterogeneity: Although based on the uniform naming approach,
the UNS design differs from both uniform naming and heterogeneous naming, each of
which falls into one of the extreme end of a design spectrum. In fact, arguments on
standardisation and heterogeneity may continue, but it seems that neither is satisfactory by
itself. For example, even the HNS [Schwartz 87] has to impose a degree of standardisation
- the scheme only works if the context space is administered in a centralised fashion. On
the other hand, heterogeneity is not allowed by most global name services, such as the GNS
and the DNS [Lampson 86, Mockapetri88]. It is valuable for a large name service to let its
clients access the service from anywhere in a coherent way, which also makes management
simple. In fact, compromises between the two approaches can be made when a global name
service is designed. For example, particulars which make a local name service attractive
can be reserved by leaving the resolution of relative names for individuals to local servers.
The UNS imposes a global naming scheme for the DNs, while allowing certain extent of

heterogeneous naming to INs. The UNS approach can be justified by the fact that it
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reflects the objectives of distributed systems and reserves system coherence.

Using Globally Unique Identifiers: Some naming system designers concluded that
globally unique identifiers are neither useful nor practical; the naming scheme does not
scale well [Sollins 85, Stroud 88, Cheriton 88]. Stroud argues that if two independent
distributed systems using globally unique identifiers want to merge, it is difficult to ensure
that identifiers do not clash. For example, suppose that two LOCUS systems [Walker 83]
are combined into a larger one. There is no way to avoid name conflicts. The design and
implementation of the UNS show that global unique identifiers (i.e. the UDIs or USIs or
GUDIs defined in Chapter 3 and Chapter 4) are very useful in restructuring name spaces.
Furthermore, the way to manage them is straightforward. The scaling problem is solved
by creating a Global UDI name space, along with a GUDI resolution mechanism. It is
not necessary for every individual to have a GUDI. Only root directories, or directories on
the higher levels of a naming hierarchy are managed through the GUDI name space. The
GUDI name space has a low rate of change, and is expected to maintain tens of millions
of name spaces or high level naming contexts as the system grows continuously. Although
in principle, the scaling problem is still there, in practice, no scenario such that a system

outgrows the universal context is seen.

The GNS [Lampson 86] can be extended or restructured similar to the UNS. However, it
does not solve the scalability problem as mentioned in Chapter 4. On the other hand, it is
very difficult for the GNS to provide precise naming information like the UNS. The GNS
supports authentication without global trust while the UNS does not. However, there
should not be any significant difficulty for the UNS to do so.

Federated Naming vs Global Naming: Federated architectures offer freedom of asso-
ciation and a high degree of autonomy [Heimbigner85, Linden 90]. The UNS has a different
goal compared with a federated naming system. Firstly, it emphasizes global coherence in
the support of applications such as electronic mail, global file systems, and authentication
systems without global trust. Secondly, it provides a naming system with the ability to
grow incrementally, rather than the modest size assumed with federated naming. Thirdly,
it improves service efficiency by employing a less general naming scheme than a federated

naming system.

Replication Control Methods: In Chapter 5, how to integrate the UFP protocol and
the epidemic algorithms into the two-class name service infrastructure were discussed. On
the one hand, the UFP can provide reliable data at a reasonable cost and no multi-site
atomic action support is required. On the other hand, the epidemic algorithms are simple

and require a few guarantee from the underlying communication system. Thus the UNS
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allows a query to proceed at any time, while maintaining reliable naming data. However,
the two-class service infrastructure and the replication control protocols should not be
forced to every portion of naming data. For instance, one class name service may be run
at some site where replication is not necessary. A master/slave protocol may well be run
on a local name service with a reliable multicast support. The master/slave strategy can
also be seen as an extreme example of the two-class name service infrastructure, where
only one server is the first class server and the others are the second class servers. The
naming semantics of various systems may be best reflected if multi-class name servers

running multiple replication control protocols can be set up.

Experiences with the UNS prototype have suggested that the decision to have multiple
coordinators is feasible and avoids the complexity of having an election algorithm. A
shortcoming of having multiple coordinators is progresses may be slow. However, no
scenario has suggested that the frequency of operations on the first class servers are high

enough to prevent progresses of the service from happening.

8.3 Suggestions for Further Research

As computer networking and hardware technology develop rapidly, the potential exists
for any computer to communicate with millions of others - anywhere in the world. The
Open System Interconnection (OSI) {Zimmerman 80] proposes a suite of protocols for data
transport, authentication of communicating entities, file transfer, and remote terminal
accesses. In order to meet the need of the OSI, further investigations into computer
naming should include the construction of an Open Naming System Architecture (ONSA),
which consists of the following components: descriptive naming, secure naming, primitive

naming, federated naming and lower level naming.

The ONSA should be generic and instantiated to provide a particular name service. The
ONSA allows great flexibility and efficiency because of its modularity. Designers may
choose what to have when building a naming system. Clients may also invoke interfaces

at various levels accordingly.

It is not easy to generalise computer naming for different purposes, e.g. naming of file
systems, naming and binding of RPCs or mail addressing. Contradictory conclusions
were drawn from several different approaches. For instance, globally unique identifiers are
proven useful for name space restructuring in the UNS, but are not useful or implementable
for others. Criteria need to be established so that useful tradeoffs can be made between

the existing choices.
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Although a small scale prototype has been produced here, the design criteria relate to a

large scale system. Only large-scale practical implementation can fully validate the ideas.




Appendix A

The Paxon Synod Protocol

The Synod’s decree was chosen through a series of the numbered ballots, where a ballot
was a referendum on a single decree. In each ballot, a priest had the choice only of voting
for the decree or not voting. Associated with a ballot was a set of priest called a quorum.

A ballot succeeded if and only if every priest in the quorum voted for the decree.

Paxon mathematics defined three conditions on a set B of ballots, and then showed that
consistency was guaranteed and progress was possible if the set of ballots that had taken
place satisfied those conditions. The first two conditions can be stated informally as

follows.

B1(B) Each ballot in B has a unique ballot number.

B2(B) The quorum of any two ballots in B have at least one priest in common.

The third condition was more complicated. One Paxon manuscript contained the following,

rather confusing, statement of it.

B3(B) For every ballot Bin B, if any priest in B’s quorum voted in an earlier ballot, then
the decree of B equals the decree of the latest of those earlier ballots.

The Basic Protocol

Steps 1-6 describe how a single ballot is conducted by a priest p, who is called the president.

Each priest p had to maintain the following information in the back of his ledger:

lastTried[p] The number of the last ballot that p tried to initiate, or —oo if there

126




APPENDIX A. THE PAXON SYNOD PROTOCOL 127

was none.

prevVote[p] The vote cast by p in the highest-numbered ballot in which he voted,
or —oo if he never voted.

neztBallp]  The largest value of b for which p has sent a LastV ote(b, v) message,

or —oo if he has never sent such a message.

1. Priest p chooses a new ballot number b greater than lastTried[p], sets lastTried[p]

to b, and sends a NexztBallot(b) message to some set of priest.

2. On receiving a NextBallot(b) message from p with b > neztBal[q], priest g sets
nextBal[q] to b, and sends LastV ote(b, v) message to p, where vequals to prevV ote[q]
(A NeztBallot(b) message is ignored if b < nextBal(q].)

3. After receiving a LastVote(b,v) message from every priest in some majority set (),
where b = lastTried[p], priest p initiates a new ballot with number b, quorum ),
and decree d, where d is chosen to satisfy B3. He then sends a BeginBallot(b, d)

message to every priest in Q.

4. Upon receipt of a BeginBallot(b,d) message with b = nextBal[g], priest g casts his
vote in a ballot number b, sets prevVote[q] to this vote, and sends a Voted(d, q)
message to p. (A BeginBallot(b,d) is ignored if b # nexztBal[q])

5, If p has received a Voted(b,q) message from every priest g in @ (the quorum for
ballot number b), where b = lastTrid[p], then he writes d (the decree of that ballot)

in his ledger and sends a Success(d) message to every priest.

6. Upon receiving a Success(d) message, a priest enters decree d in his ledger.
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